The increasing frequency of heat waves under the global urbanization and climate change background poses elevating risks of chronic kidney disease (CKD). Nevertheless, there has been no evidence on associations between long-term exposures to heat waves and CKD as well as the modifying effects of land cover patterns. Based on a national representative population-based survey on CKD covering 47,086 adults and high spatial resolution datasets on temperature and land cover data, we found that annual days of exposure to heat waves were associated with increased odds of CKD prevalence. For one day/year increases in HW_975_4d (above 97.5 % of annual maximum temperature and lasting for at least 4 consecutive days), the odds ratio (OR) of CKD was 1.14 (95 %CI: 1.12, 1.15). Meanwhile, stronger associations were observed in regions with lower urbanicity [rural: 1.14 (95 %CI: 1.12, 1.16) vs urban: 1.07 (95 %CI: 1.03, 1.11), Pinteraction < 0.001], lower water body coverage [lower: 1.14 (95 %CI: 1.12, 1.16) vs higher: 1.02 (95 %CI: 0.98, 1.05), Pinteraction < 0.001], and lower impervious area coverage [lower: 1.16 (95 %CI: 1.14, 1.18) vs higher: 1.06 (95 %CI: 1.03, 1.10), Pinteraction = 0.008]. In addition, this study found disparities in modifying effects of water bodies and impervious areas in rural and urban settings. In rural regions, the associations between heat waves and CKD prevalence showed a consistent decreasing trend with increases in both proportions of water bodies and impervious areas (Pinteraction < 0.05). Nevertheless, in urban regions, we observed significant effect modification by water bodies, but not by impervious areas. Our study indicates the need for targeted land planning as part of adapting to the kidney impacts of heat waves, with a focus on urbanization in rural regions, as well as water body construction and utilization in both rural and urban regions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envint.2024.108657 | DOI Listing |
Proc Biol Sci
January 2025
School of Biological Sciences, Illinois State University, Normal, IL 61790, USA.
Characterizing how organisms respond to transient temperatures may further our understanding of their susceptibility to climate change. Past studies in the freshwater turtle, , have demonstrated that the timing and duration of heat waves can have major implications for the response of genes involved in gonadal development and the production of female hatchlings. Yet, no study has considered how the response of these genes to transient cold snap exposure may affect gonadal development and the production of males.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Storage of anthropogenic heat in the oceans is spatially inhomogeneous, impacting regional climates and human societies. Climate models project enhanced heat storage in the mid-latitude North Pacific (MNP) and much weaker storage in the tropical Pacific. However, the observed heat storage during the past half-century shows a more complex pattern, with limited warming in the MNP and enhanced warming in the northwest tropical Pacific.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China.
Perovskite semiconductors have shown significant promise for photodetection due to their low effective carrier masses and long carrier lifetimes. However, achieving balanced detection across a broad spectrum-from X-rays to infrared-within a single perovskite photodetector presents challenges. These challenges stem from conflicting requirements for different wavelength ranges, such as the narrow bandgap needed for infrared detection and the low dark current necessary for X-ray sensitivity.
View Article and Find Full Text PDFBiochemistry
January 2025
School of Chemistry and Biochemistry, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States.
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!