Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Neutron reflectometry has long been a powerful tool to study the interfacial properties of energy materials. Recently, time-resolved neutron reflectometry has been used to better understand transient phenomena in electrochemical systems. Those measurements often comprise a large number of reflectivity curves acquired over a narrow range, with each individual curve having lower information content compared to a typical steady-state measurement. In this work, we present an approach that leverages existing reinforcement learning tools to model time-resolved data to extract the time evolution of structure parameters. By mapping the reflectivity curves taken at different times as individual states, we use the Soft Actor-Critic algorithm to optimize the time series of structure parameters that best represent the evolution of an electrochemical system. We show that this approach constitutes an elegant solution to the modeling of time-resolved neutron reflectometry data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00467 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!