Anchored Cobalt Nanoparticles on Layered Perovskites for Rapid Peroxymonosulfate Activation in Antibiotic Degradation.

Adv Mater

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), UNIST-NUIST Energy and Environment Jointed Lab, (UNNU), School of Environmental Science and Technology, Nanjing University of Information Science and Technology (NUIST), 219 Ningliu, Nanjing, 210044, P. R. China.

Published: July 2024

In the Fenton-like reaction, revealing the dynamic evolution of the active sites is crucial to achieve the activity improvement and stability of the catalyst. This study reports a perovskite oxide in which atomic (Co) in situ embedded exsolution occurs during the high-temperature phase transition. This unique anchoring strategy significantly improves the Co/Co cycling efficiency at the interface and inhibits metal leaching during peroxymonosulfate (PMS) activation. The Co@L-PBMC catalyst exhibits superior PMS activation ability and could achieve 99% degradation of tetracycline within 5 min. The combination of experimental characterization and density functional theory (DFT) calculations elucidates that the electron-deficient oxygen vacancy accepts an electron from the Co 3d-orbital, resulting in a significant electron delocalization of the Co site, thereby facilitating the adsorption of the *HSO/*OH intermediate onto the "metal-V bridge" structure. This work provides insights into the PMS activation mechanism at the atomic level, which will guide the rational design of next-generation catalysts for environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202402935DOI Listing

Publication Analysis

Top Keywords

pms activation
12
anchored cobalt
4
cobalt nanoparticles
4
nanoparticles layered
4
layered perovskites
4
perovskites rapid
4
rapid peroxymonosulfate
4
activation
4
peroxymonosulfate activation
4
activation antibiotic
4

Similar Publications

The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset.

View Article and Find Full Text PDF

Efficient activation of peroxymonosulfate by MoTiCT@Co for sustained emerging micropollutant removal: Mo vacancy-mediated activation in Fenton-like reactions.

J Colloid Interface Sci

December 2024

Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.

Developing advanced heterogeneous catalysts through structural modifications effectively enhances the catalytic activity of non-homogeneous catalysts for removing emerging micropollutants (EMPs). In this study, MoTiCT@Co with Mo vacancies was synthesized using the Lewis molten salt method, which efficiently activates peroxymonosulfate (PMS) and continuously degrades EMPs in water. The abundant Mo vacancy structure in the material acts as an anchoring site for Co nanoparticles and a co-catalytic site for Fenton-like reactions, enabling PMS adsorption and activation.

View Article and Find Full Text PDF

Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.

View Article and Find Full Text PDF

Porous graphitized carbon (PGC)-supported CoFeO bimetallic catalysts (CoFeO/PGC) were prepared by a hydrothermal method using Fe(NO)·9HO and Co(NO)·6HO as precursors and were used to activate peroxymonosulfate (PMS) for the degradation of chlorobenzene (CB). Under the conditions of CoFeO/PGC catalysts and PMS concentrations of 0.1 g/L and 5 mM, respectively, in a wide range of pH (5.

View Article and Find Full Text PDF

While single-atom catalysts (SACs) have been extensively investigated as a high-atom-efficiency heterogeneous catalyst for peroxymonosulfate (PMS) oxidation reaction, the stable constructing and activation efficacy of the reaction sites remains less clarified. Herein, we employed gelatin as a N,O-bidentate ligand for Co (II) to form for a N-doped carbon precursor, while introducing NaCl as a template agent to induce the adoption of a Co-N conformation and disorganize the Co-O moiety. This approach facilitates uniform spatial isolation and atomic-level dispersion of Co atoms within the aerogel, effectively inhibiting the aggregation of Co during synthesis and enabling precise and controllable preparation of Co single-atom catalysts (SACs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!