New particle formation via the ion-mediated sulfuric acid and ammonia molecular clustering mechanism remains the most widely observed and experimentally verified pathway. Recent laboratory and molecular level observations indicate iodine-driven nucleation as a potentially important source of new particles, especially in coastal areas. In this study, we assess the role of iodine species in particle formation using the best available molecular thermochemistry data and coupled to a detailed 1-d column model which is run along air mass trajectories over the Southern Ocean and the coast of Antarctica. In the air masses traversing the open ocean, ion-mediated SA-NH clustering appears insufficient to explain the observed particle size distribution, wherein the simulated Aitken mode is lacking. Including the iodine-assisted particle formation improves the modeled Aitken mode representation with an increase in the number of freshly formed particles. This implies that more particles survive and grow to Aitken mode sizes via condensation of gaseous precursors and heterogeneous reactions. Under certain meteorological conditions, iodine-assisted particle formation can increase cloud condensation nuclei concentrations by 20%-100%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064213 | PMC |
http://dx.doi.org/10.1021/acs.est.3c09103 | DOI Listing |
Langmuir
January 2025
Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China.
Constructing wide and narrow band gap heterogeneous semiconductors is a method to improve the activity of photocatalysts. In this paper, CMS/ZnO heterojunctions were prepared by solvothermal loading of ZnO particles on the surface of CuMoS nanosheets. The photocatalytic H precipitation rate is about 545 μmol·g·h, which is 6.
View Article and Find Full Text PDFPhysiol Res
December 2024
Institute of Physiology, Biomedical Centre, Charles University, Faculty of Medicine in Plzen, Plzen, Czech Republic.
Mitochondria represent pivotal cellular organelles endowed with multifaceted functionalities encompassing cellular respiration, metabolic processes, calcium turnover, and the regulation of apoptosis, primarily through the generation of reactive oxygen species (ROS). Perturbations in mitochondrial dynamics have been intricately linked to the etiology of numerous cardiovascular pathologies, such as heart failure, ischemic heart disease, and various cardiomyopathies. Notably, recent attention has been directed towards the detrimental impact of micro- and nanoplastic pollution on mitochondrial integrity, an area underscored by a paucity of comprehensive investigations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
Coacervation based on liquid-liquid phase separation (LLPS) has been widely used for the preparation of artificial protocells and to mimic the dynamic organization of membrane-free organelles. Most complex synthetic coacervates are formed through electrostatic interactions but cannot withstand high ionic strength conditions (>0.1 M).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Forschungszentrum Jülich, Institute of Energy Technologies - Fundamental Electrochemistry (IET-1), Jülich, Germany.
The study of degradation behavior of electrocatalysts in an industrial context calls for rapid and efficient analysis methods. Optical methods like Raman spectroscopy fulfil these requirements and are thus predestined for this purpose. However, the iridium utilized in proton exchange membrane electrolysis (PEMEL) is Raman inactive in its metallic state.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Research Centre for Energy, Environment and Technology (CIEMAT), Avda. Complutense, 40, 28040, Madrid, Spain.
As tailpipe emissions have decreased, there is a growing focus on the relative contribution of non-exhaust sources of vehicle emissions. Addressing these emissions is key to better evaluating and reducing vehicles' impact on air quality and public health. Tailoring solutions for different non-exhaust sources, including brake emissions, is essential for achieving sustainable mobility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!