Machine Learning Applied to Electron Beam Lithography to Accelerate Process Optimization of a Contact Hole Layer.

ACS Appl Mater Interfaces

Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China.

Published: May 2024

Determining the lithographic process conditions with high-resolution patterning plays a crucial role in accelerating chip manufacturing. However, lithography imaging is an extremely complex nonlinear system, and obtaining suitable process conditions requires extensive experimental attempts. This severely creates a bottleneck in optimizing and controlling the lithographic process conditions. Herein, we report a process optimization solution for a contact layer of metal oxide nanoparticle photoresists by combining electron beam lithography (EBL) experiments with machine learning. In this solution, a long short-term memory (LSTM) network and a support vector machine (SVM) model are used to establish the contact hole imaging and process condition classification models, respectively. By combining SVM with the LSTM network, the process conditions that simultaneously satisfy the requirements of the contact hole width and local critical dimension uniformity tolerance can be screened. The verification results demonstrate that the horizontal and vertical contact widths predicted by the LSTM network are highly consistent with the EBL experimental results, and the classification model shows good accuracy, providing a reference for process optimization of a contact layer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c18889DOI Listing

Publication Analysis

Top Keywords

process conditions
16
process optimization
12
contact hole
12
lstm network
12
machine learning
8
electron beam
8
beam lithography
8
process
8
optimization contact
8
lithographic process
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!