In this work, a trimetallic (Ni/Co/Zn) organic framework (tMOF), synthesized by a solvothermal method, was calcinated at 400 and 600 °C and the final products were used as a support for lipase immobilization. The material annealed at 400 °C (Ni-Co-Zn@400) had an improved surface area (66.01 m/g) and pore volume (0.194 cm/g), which showed the highest enzyme loading capacity (301 mg/g) with a specific activity of 0.196 U/mg, and could protect the enzyme against thermal denaturation at 65 °C. The optimal pH and temperature for the lipase were 8.0 and 45 °C but could tolerate pH levels 7.0-8.0 and temperatures 40-60 °C. Moreover, the immobilized enzyme (Ni-Co-Zn@Lipase, Ni-Co-Zn@400@Lipase, or Ni-Co-Zn@600@Lipase) could be recovered and reused for over seven cycles maintaining 80, 90, and 11% of its original activity and maintained a residual activity >90% after 40 storage days. The remarkable thermostability and storage stability of the immobilized lipase suggest that the rigid structure of the support acted as a protective shield against denaturation, while the improved pH tolerance toward the alkaline range indicates a shift in the ionization state attributed to unequal partitioning of hydroxyl and hydrogen ions within the microenvironment of the active site, suggesting that acidic residues may have been involved in forming an enzyme-support bond. The high enzyme loading capacity, specific activity, encouraging stability, and high recoverability of the tMOF@Lipase indicate that a multimetallic MOF could be a better platform for efficient enzyme immobilization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c00090 | DOI Listing |
Mar Drugs
January 2025
ARC Industrial Transformation Training Centre for Green Chemistry in Manufacturing, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia.
Squid viscera, a byproduct of squid processing, contains oil rich in omega-3 fatty acids (up to 10% by mass) and the antioxidant astaxanthin. However, its high free fatty acid (FFA) content compromises stability. To address this, pilot-scale (200 L) enzymatic re-esterification of squid oil using immobilized lipase (Lipozyme RMIM) was demonstrated, resulting in high acylglyceride yields.
View Article and Find Full Text PDFJ Biotechnol
January 2025
Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy. Electronic address:
This study explores the immobilization of lipase from Candida rugosa (CRL) on hemp tea waste to catalyze the esterification of oleic acid with primary aliphatic C2-C12 alcohols. in a solvent-free system. The immobilization method employed was adsorption, chosen for its simplicity, low cost, and ability to preserve enzyme activity.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Shandong Provincial Innovation Center for Dairy Technology, Zibo, P.R. China.
The dairy industry is progressively integrating advanced enzyme technologies to optimize processing efficiency and elevate product quality. Among these technologies, enzyme immobilization has emerged as a pivotal innovation, offering considerable benefits in terms of enzyme reusability, stability, and overall process sustainability. This review paper explores the latest improvements in enzyme immobilization techniques and their industrial applications within milk processing.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
The development of efficient immobilization support for the enhancement of enzyme activity and recyclability is a highly desirable objective. Single-crystalline ordered macro-microporous ZIF-8 (SOM-ZIF-8), has emerged as a highly effective matrix for enzyme immobilization, however, the inherent hydrophobic nature limits its further advancement. Herein, we have customized the immobilization of the Pseudomonas cepacia lipase (LP) in the modification-channels of SOM-ZIF-8 by functionalizing the inner surface-properties with polyethylene glycol (PEG) (LP@SOM-ZIF-8-PEG), and significant enhancement of the activity and (thermal, solvent and cyclic) stability can be realized.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
School of Food Science, Guangdong Pharmaceutical University, Zhongshan, China.
Background: Immobilized enzyme possessing both high activity and good selectivity is important in practice. In this study, Candida antarctica lipase B (CALB) was immobilized onto the macroporous resin ADS-17 for triacylglycerol (TAG) synthesis through esterification of oleic acid and glycerol. The reaction conditions were optimized by single-factor study and orthogonal test, and the reusability of the immobilized CALB (CALB@ADS-17) was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!