A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

User tendency-based rating scaling in online trading networks. | LitMetric

User tendency-based rating scaling in online trading networks.

PLoS One

Department of Computer Science and Engineering, Chungnam National University, Daejeon, Republic of Korea.

Published: April 2024

Social networks often involve the users rating each other based on their beliefs, abilities, and other characteristics. This is particularly common in e-commerce platforms where buyers rate sellers based on their trustworthiness. However, the rating tends to vary between users due to differences in their individual scoring criteria. For example, in a transaction network, a positive user may give a high rating unless the transaction was unsatisfactory while a neutral user may give a mid-rating, consequently giving the same numeric score to different levels of satisfaction. In this paper, we propose a novel method called user tendency-based rating scaling, which adjusts the current rating (its score) based on the pattern of past ratings. We investigate whether this rating scaling method can classify between "good users" and "bad users" in online trade social networks better when compared with using the original rating scores without scaling. Classifying between good users and bad users is especially important for anonymous rating networks like Bitcoin transaction networks, where users' reputations must be recorded to preclude fraudulent and risky users. We evaluate the proposed rating scaling method by performing user classification, link prediction, and clustering tasks, using three real-world online rating network datasets. We use both the original ratings and the scaled ratings as weights of graphs and use a weighted graph embedding method to find node representations that reflect users' positive and negative information. The experimental results showed that using the proposed rating scaling method outperformed using the original (i.e., unscaled) ratings by up to 17% in classification accuracy, and by up to 2.5% in link prediction based on the AUC ROC measure, and by up to 21% in the clustering tasks based on the Dunn-index.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11020358PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0297903PLOS

Publication Analysis

Top Keywords

rating scaling
20
rating
12
scaling method
12
user tendency-based
8
tendency-based rating
8
social networks
8
proposed rating
8
link prediction
8
clustering tasks
8
scaling
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!