Unveil the origin of voltage oscillation for sodium-ion batteries operating at -40 °C.

Proc Natl Acad Sci U S A

Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, School of Chemistry and Materials, Fudan University, Shanghai 200433, China.

Published: April 2024

Voltage oscillation at subzero in sodium-ion batteries (SIBs) has been a common but overlooked scenario, almost yet to be understood. For example, the phenomenon seriously deteriorates the performance of NaV(PO) (NVP) cathode in PC (propylene carbonate)/EC (ethylene carbonate)-based electrolyte at -20 °C. Here, the correlation between voltage oscillation, structural evolution, and electrolytes has been revealed based on theoretical calculations, in-/ex-situ techniques, and cross-experiments. It is found that the local phase transition of the NaV(PO) (NVP) cathode in PC/EC-based electrolyte at -20 °C should be responsible for the oscillatory phenomenon. Furthermore, the low exchange current density originating from the high desolvation energy barrier in NVP-PC/EC system also aggravates the local phase transformation, resulting in severe voltage oscillation. By introducing the diglyme solvent with lower Na-solvent binding energy, the voltage oscillation of the NVP can be eliminated effectively at subzero. As a result, the high capacity retentions of 98.3% at -20 °C and 75.3% at -40 °C are achieved. The finding provides insight into the abnormal SIBs degradation and brings the voltage oscillation behavior of rechargeable batteries into the limelight.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047101PMC
http://dx.doi.org/10.1073/pnas.2311075121DOI Listing

Publication Analysis

Top Keywords

voltage oscillation
24
-20 °c
12
sodium-ion batteries
8
-40 °c
8
navpo nvp
8
nvp cathode
8
electrolyte -20
8
local phase
8
voltage
6
oscillation
6

Similar Publications

The modified nanoparticles can significantly improve the insulation characteristics of transformer oil. Currently, there is a lack of research on the actual motion state of particles in nanofluid to further understand the micro-mechanism of nanoparticles improving the insulation characteristics of transformer oil. In this study, the nanofluid containing 0.

View Article and Find Full Text PDF

Photovoltaic (PV) modules may encounter nonuniform situations that reduce their useable power volume, causing ineffective maximum power point tracking (MPPT). Moreover, due to the incorporation of bypass diodes, power-voltage (P-V) graph has multi-peaks when each component of the module receives different solar irradiation. This paper proposes a solution to this problem using an arithmetic optimization algorithm (AOA) for MPPT in PV systems operating in nonuniform situations.

View Article and Find Full Text PDF

Recent experimental studies showed that electrically coupled neural networks like in mammalian inferior olive nucleus generate synchronized rhythmic activity by the subthreshold sinusoidal-like oscillations of the membrane voltage. Understanding the basic mechanism and its implication of such phenomena in the nervous system bears fundamental importance and requires preemptively the connectome information of a given nervous system. Inspired by these necessities of developing a theoretical and computational model to this end and, however, in the absence of connectome information for the inferior olive nucleus, here we investigated interference phenomena of the subthreshold oscillations in the reference system for which the structural anatomical connectome was completely known recently.

View Article and Find Full Text PDF

This article reports a 110.2 MHz ultra-low-power phase-locked loop (PLL) for MEMS timing/frequency reference oscillator applications. It utilizes a 6.

View Article and Find Full Text PDF

Although electric vehicles supplied through distributed generators (DGs) have been universally researched to reduce CO emissions, the accurate current sharing regarding islanded multi-bus DC charging stations considering three charging modes of electric vehicles, i.e., constant current mode, constant power mode and constant voltage mode, is rarely realized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!