Structural insights into the regulation of protein-arginine kinase McsB by McsA.

Proc Natl Acad Sci U S A

College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea.

Published: April 2024

In gram-positive bacteria, phosphorylated arginine functions as a protein degradation signal in a similar manner as ubiquitin in eukaryotes. The protein-arginine phosphorylation is mediated by the McsAB complex, where McsB possesses kinase activity and McsA modulates McsB activity. Although and are regulated within the same operon, the role of McsA in kinase activity has not yet been clarified. In this study, we determined the molecular mechanism by which McsA regulates kinase activity. The crystal structure of the McsAB complex shows that McsA binds to the McsB kinase domain through a second zinc-coordination domain and the subsequent loop region. This binding activates McsB kinase activity by rearranging the catalytic site, preventing McsB self-assembly, and enhancing stoichiometric substrate binding. The first zinc-coordination and coiled-coil domains of McsA further activate McsB by reassembling the McsAB oligomer. These results demonstrate that McsA is the regulatory subunit for the reconstitution of the protein-arginine kinase holoenzyme. This study provides structural insight into how protein-arginine kinase directs the cellular protein degradation system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11046695PMC
http://dx.doi.org/10.1073/pnas.2320312121DOI Listing

Publication Analysis

Top Keywords

kinase activity
16
protein-arginine kinase
12
kinase
8
protein degradation
8
mcsab complex
8
mcsb kinase
8
mcsb
7
mcsa
7
activity
5
structural insights
4

Similar Publications

Background: Breast cancer is a frequently diagnosed malignant disease and the primary cause of mortality among women with cancer worldwide. The therapy options are influenced by the molecular subtype due to the intricate nature of the condition, which consists of various subtypes. By focusing on the activation of receptors, Epidermal Growth Factor Receptor (EGFR) tyrosine kinase can be utilized as an effective drug target for therapeutic purposes of breast cancer.

View Article and Find Full Text PDF

Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.

View Article and Find Full Text PDF

Introduction: Schistosomiasis has for many years relied on a single drug, praziquantel (PZQ) for treatment of the disease. Immense efforts have been invested in the discovery of protein kinase (PK) inhibitors; however, given that the majority of PKs are still not targeted by an inhibitor with a useful level of selectivity, there is a compelling need to expand the chemical space available for synthesizing new, potent, and selective PK inhibitors. Small-molecule inhibitors targeting the ATP pocket of the catalytic domain of PKs have the potential to become drugs devoid of (major) side effects, particularly if they bind selectively.

View Article and Find Full Text PDF

Background: Esophageal squamous cell carcinoma (ESCC) is a malignant tumor with high morbidity and mortality, and easy to develop resistance to chemotherapeutic agents. Telomeres are DNA-protein complexes located at the termini of chromosomes in eukaryotic cells, which are unreplaceable in maintaining the stability and integrity of genome. Telomerase, an RNA-dependent DNA polymerase, play vital role in telomere length maintain, targeting telomerase is a promising therapeutic strategy for cancer.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a debilitating, incurable, and life-threatening disease that lacks effective therapy. The overexpression of phosphodiesterase 10A (PDE10A) plays a vital role in pulmonary fibrosis (PF). However, the impact of selective PDE10A inhibitors on the tumor growth factor-β (TGF-β)/small mother against decapentaplegic (Smad) signaling pathway remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!