Patients afflicted with Stimulator of interferon gene (STING) gain-of-function mutations frequently present with debilitating interstitial lung disease (ILD) that is recapitulated in mice expressing the STING mutation (VM). Prior radiation chimera studies revealed an unexpected and critical role for non-hematopoietic cells in initiating ILD. To identify STING-expressing non-hematopoietic cell types required for the development of ILD, we use a conditional knockin (CKI) model and direct expression of the VM allele to hematopoietic cells, fibroblasts, epithelial cells, or endothelial cells. Only endothelial cell-targeted VM expression results in enhanced recruitment of immune cells to the lung associated with elevated chemokine expression and the formation of bronchus-associated lymphoid tissue, as seen in the parental VM strain. These findings reveal the importance of endothelial cells as instigators of STING-driven lung disease and suggest that therapeutic targeting of STING inhibitors to endothelial cells could potentially mitigate inflammation in the lungs of STING-associated vasculopathy with onset in infancy (SAVI) patients or patients afflicted with other ILD-related disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11108094 | PMC |
http://dx.doi.org/10.1016/j.celrep.2024.114114 | DOI Listing |
J Virol
December 2024
Laboratory of Virology, Regional Centre for Biotechnology, National Capital Region Biotechnology Science Cluster, Faridabad, Haryana, India.
Extracellular vesicles (EVs) emerged as critical contributors to the pathogenesis of vascular endothelial barrier dysfunction during the inflammatory response to infection. However, the contribution of circulating EVs to modifying endothelial function during dengue virus infection remains unclear. In this study, we showed that severe dengue patients' plasma-derived EV (SD-EV) were found to carry elevated levels of different protein cargos, e.
View Article and Find Full Text PDFSmall
January 2025
Department of Bioengineering, Indian Institute of Science, Bengaluru, 560012, India.
Cancer metastasis involves cell migration from their primary organ foci into vascular channels, followed by dissemination to prospective colonization sites. Vascular entry of tumor cells or intravasation involves their breaching stromal and endothelial extracellular matrix (ECM) and the endothelial barriers. How the kinetics of this breach are confounded by chronic inflammatory stresses seen in diabetes and aging remains ill-investigated.
View Article and Find Full Text PDFJ Clin Invest
January 2025
State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center - Zhongshan School of Medicine.
Nasopharyngeal carcinoma (NPC) presents a substantial clinical challenge due to the limited understanding of its genetic underpinnings. Here we conduct the largest scale whole-exome sequencing association study of NPC to date, encompassing 6,969 NPC cases and 7,100 controls. We unveil 3 germline genetic variants linked to NPC susceptibility: a common rs2276868 in RPL14, a rare rs5361 in SELE, and a common rs1050462 in HLA-B.
View Article and Find Full Text PDFAging Cell
January 2025
Wuxi School of Medicine, Jiangnan University, Wuxi, China.
Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.
View Article and Find Full Text PDFAging Cell
January 2025
Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!