This study embarks on a comprehensive investigation of the effectiveness of repetitive transcranial direct current stimulation (tDCS)-based neuromodulation in augmenting steady-state visual evoked potential (SSVEP) brain-computer interfaces (BCIs), alongside exploring pertinent electroencephalography (EEG) biomarkers for assessing brain states and evaluating tDCS efficacy. EEG data were garnered across three distinct task modes (eyes open, eyes closed, and SSVEP stimulation) and two neuromodulation patterns (sham-tDCS and anodal-tDCS). Brain arousal and brain functional connectivity were measured by extracting features of fractal EEG and information flow gain, respectively. Anodal-tDCS led to diminished offsets and enhanced information flow gains, indicating improvements in both brain arousal and brain information transmission capacity. Additionally, anodal-tDCS markedly enhanced SSVEP-BCIs performance as evidenced by increased amplitudes and accuracies, whereas sham-tDCS exhibited lesser efficacy. This study proffers invaluable insights into the application of neuromodulation methods for bolstering BCI performance, and concurrently authenticates two potent electrophysiological markers for multifaceted characterization of brain states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNSRE.2024.3389051 | DOI Listing |
This study embarks on a comprehensive investigation of the effectiveness of repetitive transcranial direct current stimulation (tDCS)-based neuromodulation in augmenting steady-state visual evoked potential (SSVEP) brain-computer interfaces (BCIs), alongside exploring pertinent electroencephalography (EEG) biomarkers for assessing brain states and evaluating tDCS efficacy. EEG data were garnered across three distinct task modes (eyes open, eyes closed, and SSVEP stimulation) and two neuromodulation patterns (sham-tDCS and anodal-tDCS). Brain arousal and brain functional connectivity were measured by extracting features of fractal EEG and information flow gain, respectively.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
February 2024
Unit of Neurology, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier, 00133, Rome, Italy.
Early-onset Parkinson's Disease (EOPD) demands tailored treatments. The younger age of patients might account for a higher sensitivity to transcranial direct current stimulation (tDCS) based non-invasive neuromodulation, which may raise as an integrative therapy in the field. Accordingly, here we assessed the safety and efficacy of the primary left motor cortex (M1) anodal tDCS in EOPD.
View Article and Find Full Text PDFThe study of brain state estimation and intervention methods is of great significance for the utility of brain-computer interfaces (BCIs). In this paper, a neuromodulation technology using transcranial direct current stimulation (tDCS) is explored to improve the performance of steady-state visual evoked potential (SSVEP)-based BCIs. The effects of pre-stimulation, sham-tDCS and anodal-tDCS are analyzed through a comparison of the EEG oscillations and fractal component characteristics.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
August 2022
Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran,Iran.
Background: Although transcranial direct current stimulation (tDCS) has shown to potentially mitigate drug craving and attentional bias to drug-related stimuli, individual differences in such modulatory effects of tDCS are less understood. In this study, we aimed to investigate a source of the inter-subject variability in the tDCS effects that can be useful for tDCS-based treatments of individuals with methamphetamine (MA) use disorder (IMUD).
Methods: Forty-two IMUD (all male) were randomly assigned to receive a single-session of either sham or real bilateral tDCS (anodal right/cathodal left) over the dorsolateral prefrontal cortex.
Neurology
July 2021
From Innovation, Implementation and Clinical Translation in Health (IIMPACT in Health) (B.H., M.C.R.), Allied Health and Human Performance Academic Unit, University of South Australia, Adelaide; Graduate School of Health, Discipline of Physiotherapy (A.B.M.), University of Technology Sydney, Australia; and Department of Exercise Sciences (L.V.B.), University of Auckland, New Zealand.
New treatments that can facilitate neural repair and reduce persistent impairments have significant value in promoting recovery following stroke. One technique that has gained interest is transcranial direct current stimulation (tDCS) as early research suggested it could enhance plasticity and enable greater behavioral recovery. However, several studies have now identified substantial intersubject variability in response to tDCS and clinical trials revealed insufficient evidence of treatment effectiveness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!