AI Article Synopsis

  • The paper introduces a high-precision CMOS fluorescence photometry sensor featuring a novel lock-in amplification method that enhances performance while minimizing power consumption.
  • The sensor design integrates two photodiodes, operates at 1 kHz, has a dynamic range of 42 dB, and successfully detects light powers from 8 nW to 24 µW, all within a compact 3D-printed housing.
  • Experimental results demonstrate the sensor's effectiveness in real-time biomarker detection, achieving a sensitivity of 1:100,000 and revealing its capability to detect varying densities of NIH3T3 mouse cells.

Article Abstract

This paper presents a high-precision CMOS fluorescence photometry sensor using a novel lock-in amplification scheme based on switched-biasing and ping-pong auto-zeroing techniques. The CMOS sensor includes two photodiodes and a lock-in amplifier (LIA) operating at 1 kHz. The LIA comprises a differential low-noise amplifier using a novel switched-biasing ping-pong auto-zeroed scheme, an automatic phase aligner, a programmable gain amplifier, a band-pass filter, a mixer, and an output low-pass filter. The design is fabricated in 0.18-µm CMOS process, and the measurement shows that the LIA can retrieve noisy input signals with a dynamic reserve of 42 dB, while consuming only 0.7 mW from a 1.8 V supply voltage. The measured results show that the LIA can detect a wide range of incident light power from 8 nW to 24 µW. The proposed design is encapsulated in a 3D-printed housing allowing for real-time in vitro biomarker detection. This ambulatory platform uses an LED and a fiber optic to convey the excitation light to the sample and retrieve the fluorescence signal. Experiments with a beads solution diluted in PBS demonstrate that the sensor has a sensitivity of 1:100 k. Experimental results obtained in vitro with NIH3T3 mouse cells tagged with membrane dye show the ability of the prototype to detect different densities of cell culture. The portable prototype, which includes optical filters and a small 30 mm × 36 mm × 30 mm printed circuit board enclosed inside the 3D-printed housing, consumes 36.7 mW and weighs 120 g.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TBCAS.2024.3388569DOI Listing

Publication Analysis

Top Keywords

ping-pong auto-zeroed
8
fluorescence photometry
8
photometry sensor
8
switched-biasing ping-pong
8
3d-printed housing
8
high precision
4
precision ping-pong
4
auto-zeroed lock-in
4
lock-in fluorescence
4
sensor
4

Similar Publications

Article Synopsis
  • The paper introduces a high-precision CMOS fluorescence photometry sensor featuring a novel lock-in amplification method that enhances performance while minimizing power consumption.
  • The sensor design integrates two photodiodes, operates at 1 kHz, has a dynamic range of 42 dB, and successfully detects light powers from 8 nW to 24 µW, all within a compact 3D-printed housing.
  • Experimental results demonstrate the sensor's effectiveness in real-time biomarker detection, achieving a sensitivity of 1:100,000 and revealing its capability to detect varying densities of NIH3T3 mouse cells.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!