Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Identifying the progression stages of Alzheimer's disease (AD) can be considered as an imbalanced multi-class classification problem in machine learning. It is challenging due to the class imbalance issue and the heterogeneity of the disease. Recently, graph convolutional networks (GCNs) have been successfully applied in AD classification. However, these works did not handle the class imbalance issue in classification. Besides, they ignore the heterogeneity of the disease. To this end, we propose a novel cost-sensitive weighted contrastive learning method based on graph convolutional networks (CSWCL-GCNs) for imbalanced AD staging using resting-state functional magnetic resonance imaging (rs-fMRI). The proposed method is developed on a multi-view graph constructed by the functional connectivity (FC) and high-order functional connectivity (HOFC) features of the subjects. A novel cost-sensitive weighted contrastive learning procedure is proposed to capture discriminative information from the minority classes, encouraging the samples in the minority class to provide adequate supervision. Considering the heterogeneity of the disease, the weights of the negative pairs are introduced into contrastive learning and they are computed based on the distance to class prototypes, which are automatically learned from the training data. Meanwhile, the cost-sensitive mechanism is further introduced into contrastive learning to handle the class imbalance issue. The proposed CSWCL-GCN is evaluated on 720 subjects (including 184 NCs, 40 SMC patients, 208 EMCI patients, 172 LMCI patients and 116 AD patients) from the ADNI (Alzheimer's Disease Neuroimaging Initiative). Experimental results show that the proposed CSWCL-GCN outperforms state-of-the-art methods on the ADNI database.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2024.3389747 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!