Severity: Warning
Message: fopen(/var/lib/php/sessions/ci_sessionpcdbcbn34fog2tr9t8f4k85ll57kksh2): Failed to open stream: No space left on device
Filename: drivers/Session_files_driver.php
Line Number: 177
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)
Filename: Session/Session.php
Line Number: 137
Backtrace:
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deep cross-modal hashing retrieval has recently made significant progress. However, existing methods generally learn hash functions with pairwise or triplet supervisions, which involves learning the relevant information by splicing partial similarity between data pairs; notably, this approach only captures the data similarity locally and incompletely, resulting in sub-optimal retrieval performance. In this paper, we propose a novel Multi-Relational Deep Hashing (MRDH) approach, which can fully bridge the modality gap by comprehensively modeling the similarity relationship between data in different modalities. In more detail, to investigate the inter-modal relationships, we constrain the consistency of cross-modal pairwise similarities to maintain the semantic similarity across modalities. Moreover, to further capture complete similarity information, we design a new similarity metric, which we term cross-modal global similarity, by encouraging hash codes of similar data pairs from different modalities to approach a common center and hash codes for dissimilar pairs to converge to different centers. Adopting this approach enables our model to generate more discriminative hash codes. Extensive experiments on three benchmark datasets demonstrate the superiority of our method on cross-modal hashing retrieval.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2024.3385656 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!