AI Article Synopsis

  • BCAA supplementation is popular among athletes and the general population to lessen muscle soreness and speed up recovery after intense exercise.
  • A systematic review analyzed 18 studies and found that BCAA significantly reduces creatine kinase levels and delayed onset muscle soreness (DOMS) at various time points post-exercise, particularly 24 to 96 hours after.
  • However, no significant impact on lactate dehydrogenase levels was observed, indicating that BCAA might be effective for some recovery markers but not others.

Article Abstract

Background: Branched-chain amino acid (BCAA) supplementation is one of the most popular strategies used by the general population and athletes to reduce muscle soreness and accelerate the recovery process of muscle damage biomarkers after an intense exercise or training session.

Objectives: This systematic review and meta-analysis investigated the effects of BCAA supplementation on muscle damage biomarkers and muscle soreness after exercise-induced muscle damage (EIMD).

Methods: The systematic literature search for randomized controlled trials was conducted using seven databases, up to September 13th, 2022. The eligibility criteria for selecting studies were as follows: studies performed on healthy active participants, using BCAA at least once, controlled with a placebo or control group, performing resistance or endurance exercises, and followed up at least once post-EIMD. The methodological quality of the studies was assessed using the "SIGN RCT checklist". Random-effects meta-analyses were processed to compute the standardized mean difference (Hedges' g). Meta-regression analyses were completed with daily and total dosage and supplementation as continuous moderator variables.

Results: Of the 18 studies included in this meta-analysis, 13 were of high quality and five were of acceptable quality. Our results revealed BCAA supplementation elicits a significant effect on reducing creatine kinase (CK) levels immediately (g = - 0.44; p = 0.006) and 72 h (g = - 0.99; p = 0.002), but not 24 h, 48 h, and 96 h post-EIMD. Additionally, a significant effect on delayed onset of muscle soreness (DOMS) was identified at 24 h (g = - 1.34; p < 0.001), 48 h (g = - 1.75; p < 0.001), 72 h (g = - 1.82; p < 0.001), and 96 h (g = - 0.82; p = 0.008), but not immediately post-EIMD. No significant effect was found on lactate dehydrogenase (LDH) levels at any time point. Meta-regression indicated higher daily and total dosages of BCAA, and longer supplementation periods were related to the largest beneficial effects on CK (total dosage and supplementation period) at 48 h, and on DOMS at 24 h (only daily dosage).

Conclusion: The overall effects of BCAA supplementation could be considered useful for lowering CK and DOMS after EIMD, but not LDH. The longer supplementation period prior to the EIMD could be more effective for CK and DOMS reduction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11021390PMC
http://dx.doi.org/10.1186/s40798-024-00686-9DOI Listing

Publication Analysis

Top Keywords

muscle damage
20
muscle soreness
16
bcaa supplementation
16
damage biomarkers
12
muscle
8
biomarkers muscle
8
soreness exercise-induced
8
exercise-induced muscle
8
branched-chain amino
8
amino acid
8

Similar Publications

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Skeletal organoids.

Biomater Transl

November 2024

Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China.

The skeletal system, composed of bones, muscles, joints, ligaments, and tendons, serves as the foundation for maintaining human posture, mobility, and overall biomechanical functionality. However, with ageing, chronic overuse, and acute injuries, conditions such as osteoarthritis, intervertebral disc degeneration, muscle atrophy, and ligament or tendon tears have become increasingly prevalent and pose serious clinical challenges. These disorders not only result in pain, functional loss, and a marked reduction in patients' quality of life but also impose substantial social and economic burdens.

View Article and Find Full Text PDF

Use of Hemoadsorption and Continuous Venovenous Hemodialysis With Enhanced Middle Molecule Clearance in Drug-Induced Rhabdomyolysis.

Case Rep Crit Care

January 2025

Department of Anesthesiology and Intensive Care Medicine, Kreiskliniken Günzburg-Krumbach, Krumbach, Germany.

Drug-induced rhabdomyolysis has become increasingly prevalent due to the rising use of medications such as statins, antidepressants, and antipsychotics. These can lead to muscle cell destruction and the release of myoglobin, potentially causing kidney damage. Recent advancements include the use of CytoSorb hemoadsorption as a promising therapy to remove myoglobin and other potentially toxic substances from the bloodstream.

View Article and Find Full Text PDF

DNA damage is a driver of cancer formation, leading to the impairment of repair mechanisms in cancer cells and rendering them susceptible to DNA-damaging therapeutic approaches. The concept of "synthetic lethality" in cancer clinics has emerged, particularly with the use of PARP inhibitors and the identification of DNA damage response (DDR) mutation biomarkers, emphasizing the significance of targeting DDR in cancer therapy. Novel approaches aimed at genome maintenance machinery are under development to further enhance the efficacy of cancer treatments.

View Article and Find Full Text PDF

Backgrounds: Renal interstitial fibrosis (RIF) constitutes the ultimate pathological alteration in nearly all chronic kidney diseases (CKD). Mesenchymal stem cell conditioned medium (MSC-CM) exhibits an alleviating impact on renal fibrosis; however, the underlying mechanism remains unclear. The objective of this study was to explore whether MSC-CM regulates the expression of α-smooth muscle actin (α-SMA), Transforming growth factor-β1 (TGF-β1), Hypoxia-inducible factor-1α (HIF-1α), Nuclear receptor coactivators (NCOA1), and SRY-related high mobility (Sox9).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!