For the first time, the influence of Cerium (Ce) on the structural, microstructural, Fourier infrared spectroscopy, and LPG sensing behaviour of CoCrCeO (CoCrCe) is described in this study. The solution combustion technique was used to create the CoCrCe samples. All samples were sintered for 3 h at 600 °C to achieve a pure crystalline nature free of impurities. The production of cubic spinel structures with typical crystallite sizes smaller than 16 nm is confirmed by X-ray diffraction. Because compressive lattice strain is created when Ce ions are replaced by Cr ions, we discovered reducing the lattice parameter. Further samples were analysed using the FTIR technique to learn about the octahedral and tetrahedral stretching bands, which confirmed the ferrite structure was free of impurities. Scanning Electron microscopy was used to examine the samples' microstructures. All of the samples were determined to be very porous. Elemental analysis was performed using energy dissipative spectra, which confirmed the presence of all elements in the samples. 2-mol% Ce has the best gas sensing characteristics of any Ce concentration. Furthermore, the thin film based on CoCrCeO may be employed as a chemiresistive gas sensor to detect LPG (10-1000 ppb) at room temperature. On LPG exposure, the constructed gas sensor demonstrates greater gas sensitivity in the order of 98% at 500 ppb, with higher stability, rapid response, and recovery time in the order of 60 s and 75 s, respectively. This study reports for the first time on the creation of an LPG gas sensor device that operates at room temperature and has high sensitivity. Because of their high gas sensitivity, rapid reaction and recovery times, and long-term stability, these material gas sensors might be ideal materials for the manufacture of gas sensors devices for the detection of LPG low concentration (ppb level).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887243PMC
http://dx.doi.org/10.1007/s10854-022-09725-1DOI Listing

Publication Analysis

Top Keywords

gas sensor
12
lpg sensing
8
sensing behaviour
8
behaviour cocrceo
8
free impurities
8
gas
8
room temperature
8
gas sensitivity
8
gas sensors
8
lpg
5

Similar Publications

This study presents the characterization of a novel multilayered three-dimensional (3D) polymer exhibiting aggregation-induced emission (AIE) properties when excited at a low wavelength of 280 nm. Utilizing fluorescence spectroscopy, we demonstrate that the polymer displays a marked enhancement in luminescence upon aggregation, a characteristic behavior that distinguishes AIE-active materials from conventional fluorophores. Furthermore, we explore the potential application of this multilayered 3D polymer as a fluorescent probe for the selective detection of specified metal ions.

View Article and Find Full Text PDF

Electronic nose (e-nose) systems are well known in breath analysis because they combine breath printing with advanced and intelligent machine learning (ML) algorithms. This work demonstrates development of an e-nose system comprising gas sensors exposed to six different volatile organic compounds (VOCs). The change in the voltage of the sensors was recorded and analyzed through ML algorithms to achieve selectivity and predict the VOCs.

View Article and Find Full Text PDF

Hydrogen-bond-driven 1D assembly of carbon nanotubes dispersed in organic solvents remains challenging owing to difficulties associated with achieving high oxidation levels and uniform dispersion. Here, we introduced a bioinspired wet-spinning method that utilizes highly oxidized single-walled carbon nanotubes dispersed in organic solvents without superacid or dispersants. By incorporating submicrometer-sized graphene oxide nanosheets, we facilitated the ejection of 1.

View Article and Find Full Text PDF

Hydrogen is a zero-emissive fuel and has immense potential to replace carbon-emitting fuels in the future. The development of efficient H sensors is essential for preventing hazardous situations and facilitating the widespread usage of hydrogen. Chemiresistors are popular gas sensors owing to their attractive properties such as fast response, miniaturization, simple integration with electronics and low cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!