Synergy of Selenium and Silicon to Mitigate Abiotic Stresses: a Review.

Gesunde Pflanz

São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castellane S/n, 14884-900 Jaboticabal-SP, Brazil.

Published: January 2023

It is evident the increase in the occurrence of different stresses that impact agriculture and so there has been an increase in research to study stress mitigators including silicon (Si) and selenium (Se). However, the great challenge to be answered would be to assess whether it is possible to maximize these benefits by combining these two elements. Therefore, this review focused on discussing the feasibility of combining Se and Si in mitigating abiotic stresses and also measuring gains in yield and quality of agricultural products. These are the main challenges of plant mineral nutrition with these two elements for sustainable cultivation, ensuring food security with the possibility of improving human health. As the mode of application of an element can change absorption and assimilation processes and consequently the plant's response, it is important to consider research with supply of these elements via the foliar and root route. Thus, we highlighted the potential of the combined application of Se and Si and whether or not they are relevant to overcome the individual application in stress mitigation or even in plants without stress. In addition, we pointed out new directions for research on this topic in order to reinforce the combined use of stress relievers and their potential benefit to crop plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9838374PMC
http://dx.doi.org/10.1007/s10343-022-00826-9DOI Listing

Publication Analysis

Top Keywords

abiotic stresses
8
synergy selenium
4
selenium silicon
4
silicon mitigate
4
mitigate abiotic
4
stresses a review
4
a review evident
4
evident increase
4
increase occurrence
4
occurrence stresses
4

Similar Publications

Blood storage lesion induces cytosolic and membrane changes driven in part by hemoglobin (Hb) oxidation reactions within red blood cells (RBCs). A novel gel formulation containing the antioxidant curcuminoids in a biocompatible solvent system was used to deliver curcumin into RBCs. Incubation of peroxide treated RBCs stored in PBS with curcumin gel led to a reduction in prooxidant ferrylHb and recovery in ATP.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

The quality of cigar tobacco leaves is profoundly affected by the timing of their harvest, with both early and late collections resulting in inferior characteristics. While the relationship between maturity and physiological metabolic processes is acknowledged, a comprehensive understanding of the physiological behavior of cigar leaves harvested at different stages remains elusive. This research investigated the physiological and metabolomic profiles of the cigar tobacco variety CX-014, grown in Danjiangkou City, Hubei Province, with leaves sampled at 35 (T1), 42 (T2), 49 (T3), and 56 (T4) days post-inflorescence removal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!