A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual Drug Delivery for Augmenting Bacterial Wound Complications via Tailored Ultradeformable Carriers. | LitMetric

Dual Drug Delivery for Augmenting Bacterial Wound Complications via Tailored Ultradeformable Carriers.

Bioconjug Chem

Infectious Disease Biology Laboratory, Chemical Biology Unit, Institute of Nano Science & Technology, Sector 81, Mohali, Punjab 140306, India.

Published: June 2024

Addressing the complex challenge of healing of bacterially infected wounds, this study explores the potential of lipid nanomaterials, particularly advanced ultradeformable particles (UDPs), to actively influence the wound microenvironment. The research introduces a novel therapeutic approach utilizing silver sulfadiazine (SSD) coupled with vitamin E (VE) delivered through UDPs (ethosomes/transferosomes/transethosomes). Comparative physicochemical characterization of these nanosized drug carriers reveals the superior stability of transethosomes, boasting a zeta potential of -36.5 mV. This method demonstrates reduced side effects compared to conventional therapies, with almost 90% SSD and 72% VE release achieved in wound pH in a sustained manner. Cytotoxicity assessment shows 60% cell viability even at the highest concentration (175 μg/mL), while hemolysis test demonstrates RBC lysis below 5% at a concentration of 250 μg/mL. Vitamin E-SSD-loaded transethosomes (VSTEs) significantly enhance cellular migration and proliferation, achieving 95% closure within 24 h, underscoring their promising efficacy. The synergistic method effectively reduces bacterial burden, evidenced by an 80% reduction in and within the wound microenvironment. This approach offers a promising strategy to address complications associated with skin injuries.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.4c00102DOI Listing

Publication Analysis

Top Keywords

wound microenvironment
8
dual drug
4
drug delivery
4
delivery augmenting
4
augmenting bacterial
4
wound
4
bacterial wound
4
wound complications
4
complications tailored
4
tailored ultradeformable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!