Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
On-chip polarization-sensitive photodetectors are highly desired for ultra-compact optoelectronic systems. It has been demonstrated that polarization-sensitive photodetection can be realized using intrinsic chiral and anisotropy materials. However, these photodetectors can only realize the detection of either circularly polarized light (CPL) or linear polarized light (LPL) and are not applicable to multiple-polarization-sensitive photodetection. Herein, we experimentally demonstrate a metasurface-integrated semiconductor to realize multiple-polarization-sensitive photodetection at visible wavelengths. This device is composed of a MoSe monolayer on an H-shaped plasmonic nanostructure. The geometric chirality and anisotropy of the H-shaped nanostructure result in CPL and LPL resolved optical responses. By integrating a plasmonic metasurface with monolayer MoSe, we converted polarization-sensitive optical absorption to the polarization-sensitive photocurrent of the device through the photoconductive effect. Polarization-sensitive photocurrent responses to both CPL and LPL are systematically investigated, which demonstrate a high photocurrent circular dichroism (CD) of 0.35 at a wavelength of 810 nm and photocurrent linear polarization (LP) of 0.4 at a wavelength of 633 nm. Our results provide a potential pathway to realize multiple-polarization-sensitive applications in medicine analysis, biology, and remote sensing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr00808a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!