Cellulose is the utmost plenteous source of biopolymer in our earth, and fungi are the most efficient and ubiquitous organism in degrading the cellulosic biomass by synthesizing cellulases. Tailoring through genetic manipulation has played a substantial role in constructing novel fungal strains towards improved cellulase production of desired traits. However, the traditional methods of genetic manipulation of fungi are time-consuming and tedious. With the availability of the full-genome sequences of several industrially relevant filamentous fungi, CRISPR-CAS (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) technology has come into the focus for the proficient development of manipulated strains of filamentous fungi. This review summarizes the mode of action of cellulases, transcription level regulation for cellulase expression, various traditional strategies of genetic manipulation with CRISPR-CAS technology to develop modified fungal strains for a preferred level of cellulase production, and the futuristic trend in this arena of research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8319711 | PMC |
http://dx.doi.org/10.1007/s43393-021-00045-9 | DOI Listing |
Curr Microbiol
January 2025
State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory for Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha, China.
Remodelling regulatory pathways to directionally increase the efficiency of specific promoters in chassis cells is an effective strategy for the rational construction of expression systems. However, the repeated utilization of one regulator to modify the host cell to improve expression motif efficiency has a limited effect. Therefore, it is preferable to identify new regulatory factors to activate specific pathways and thus further improve the efficiency of target elements.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
Agro-industrial residues have transitions from being an environmental problem to being a cost-effective source of biopolymers and value-added chemicals. However, the efficient extraction of the desired products from these residues requires pretreatments. Fungal biorefinery is a fascinating approach for the biotransformation of raw materials into multiple products in a single batch.
View Article and Find Full Text PDFToxics
December 2024
School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450000, China.
The study of the effect of the mechanism of urea addition to sewage sludge and sawdust-composting substrates on methane production is still limited. In the present study, the systematic investigation of the effect of urea addition (0.18, 0.
View Article and Find Full Text PDFMicroorganisms
December 2024
College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
Butachlor is a widely utilized acetamide herbicide noted for its systemic selectivity against pre-emergence grass weeds. Butachlor has negative effects on organisms and the environment, so it is necessary to screen degradation strains. In this investigation, strain DC-1 was isolated from soil persistently exposed to butachlor.
View Article and Find Full Text PDFInsects
December 2024
Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China.
Cellulose is essential in the growth and development of herbivores. However, its limited utilization by herbivores is a key factor restricting their feed conversion rates. Cellulase can hydrolyze cellulose into glucose, and the addition of exogenous cellulase preparations to feed is an effective method for improving the cellulose utilization rate of ruminants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!