Microstructure and Ablation Behavior of Low-Pressure Plasma Sprayed ZrB Coatings Down to 100 Pa.

J Therm Spray Technol

State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shannxi People's Republic of China.

Published: December 2021

The effect of chamber pressure on the microstructure and ablation behavior of ZrB coatings deposited by low-pressure plasma spraying was investigated. The results showed that as the spray chamber pressure further was reduced to less than 50 kPa, the porosity of the coating deposited at the same distance decreased with the chamber pressure, and the coating prepared under 100 Pa presented the lowest porosity of about 0.89%. The ablation performance test subjected to high-temperature plasma jet revealed that the linear ablation rate of ZrB coating increased with the porosity of the coating. As a result, among the ZrB coatings deposited at chamber pressures of 100 Pa, 5 kPa, 10 kPa and 50 kPa, the dense coating deposited at 100 Pa showed the lowest ablation rate of 0.33 µm/s. The dense ZrB coating with a thickness of about 100 μm was able to withstand 300 s ablation by a plasma flame with a net power of 25 kW resulting in an ablating coating surface temperature of about 2000 °C. The ablation mechanism of the coating was also examined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638653PMC
http://dx.doi.org/10.1007/s11666-021-01290-zDOI Listing

Publication Analysis

Top Keywords

zrb coatings
12
chamber pressure
12
microstructure ablation
8
ablation behavior
8
low-pressure plasma
8
coatings deposited
8
coating
8
porosity coating
8
coating deposited
8
ablation rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!