The current nightmare for the whole world is COVID-19. The occurrence of concentrated pneumonia cases in Wuhan city, Hubei province of China, was first reported on December 30, 2019. SARS-CoV first disclosed in 2002 but had not outspread worldwide. After 18 years, in 2020, it reemerged and outspread worldwide as SARS-CoV-2 (COVID-19), as the most dangerous virus-creating disease in the world. Is it possible to create a favorable evolution within the short time (18 years)? If possible, then what are those properties or factors that are changed in SARS-CoV-2 to make it undefeated? What are the fundamental differences between SARS-CoV-2 and SARS? The study is one of the initiatives to find out all those queries. Here, four types of protein sequences from SARS-CoV-2 and SARS were retrieved from the database to study their physicochemical and structural properties. Results showed that charged residues are playing a pivotal role in SARS-CoV-2 evolution and contribute to the helix stabilization. The formation of the cyclic salt bridge and other intra-protein interactions specially network aromatic-aromatic interaction also play the crucial role in SAS-CoV-2. This comparative study will help to understand the evolution from SARS to SARS-CoV-2 and helpful in protein engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935616PMC
http://dx.doi.org/10.1007/s43393-022-00091-xDOI Listing

Publication Analysis

Top Keywords

intra-protein interactions
8
sars-cov-2 sars
8
outspread worldwide
8
sars-cov-2
7
interactions sars-cov-2
4
sars bioinformatic
4
bioinformatic analysis
4
analysis plausible
4
plausible explanation
4
explanation stability
4

Similar Publications

Benchmarking a dual-scale hybrid simulation framework for small globular proteins combining the CHARMM36 and Martini2 models.

J Mol Graph Model

December 2024

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

Multi-scale models in which varying resolutions are considered in a single molecular dynamics simulation setup are gaining importance in integrative modeling. However, combining atomistic and coarse-grain resolutions, especially for coarse-grain force fields derived from top-down approaches, have not been well explored. In this study, we have implemented and tested a dual-resolution simulation approach to model globular proteins in atomistic detail (represented by the CHARMM36 model) with the surrounding solvent in Martini2 coarse-grain detail.

View Article and Find Full Text PDF

Many proteins can exist in multiple conformational states to achieve distinct functional roles. These states include alternative conformations, variable PTMs, and association with interacting protein, nucleotide, and ligand partners. Quantitative chemical cross-linking of live cells, organelles, or tissues together with mass spectrometry provides the relative abundance of cross-link levels formed in two or more compared samples, which depends both on the relative levels of existent protein conformational states in the compared samples as well as the relative likelihood of the cross-link originating from each.

View Article and Find Full Text PDF

Coupling cellular drug-target engagement to downstream pharmacology with CeTEAM.

Nat Commun

December 2024

Science for Life Laboratory, Division of Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, SE-141 52, Sweden.

Cellular target engagement technologies enable quantification of intracellular drug binding; however, simultaneous assessment of drug-associated phenotypes has proven challenging. Here, we present cellular target engagement by accumulation of mutant as a platform that can concomitantly evaluate drug-target interactions and phenotypic responses using conditionally stabilized drug biosensors. We observe that drug-responsive proteotypes are prevalent among reported mutants of known drug targets.

View Article and Find Full Text PDF

The RNA genome of measles virus is encapsidated by the nucleoprotein within a helical nucleocapsid that serves as template for both transcription and replication. The intrinsically disordered domain of the nucleoprotein (N), partly protruding outward from the nucleocapsid, is essential for binding the polymerase complex responsible for viral transcription and replication. As for many IDPs, binding of N occurs through a short molecular recognition element (MoRE) that folds upon binding, with the majority of N remaining disordered.

View Article and Find Full Text PDF

The Omicron variant and its sub-lineages are the only current circulating SARS-CoV-2 viruses worldwide. In this study, the conformational stability of the isolated Receptor Binding Domain (RBD) of Omicron's spike protein is examined in detail. The parent Omicron lineage has over ten mutations in the ACE2 binding region of the RBD that are specifically associated with its β hairpin loop domain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!