Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Brain-computer interface (BCI) technology based on P300 signals has a broad application prospect in the assessment and diagnosis of clinical diseases and game control. The paper of selecting key electrodes to realize a wearable intention recognition system has become a hotspot for scholars at home and abroad. In this paper, based on the rich-club phenomenon that exists in the process of intention generation, a phase lag index (PLI)-rich-club-based intention recognition method for P300 is proposed. The rich-club structure is a network consisting of electrodes that are highly connected with other electrodes in the process of P300 generation. To construct the rich-club network, this paper uses PLI to construct the brain functional network, calculates rich-club coefficients of the network in the range of k degrees, initially identifies rich-club nodes based on the feature of node degree, and then performs a descending order of betweenness centrality and identifies the nodes with larger betweenness centrality as the specific rich-club nodes, extracts the non-linear features and frequency domain features of Rich-club nodes, and finally uses support vector machine for classification. The experimental results show that the range of rich-club coefficients is smaller with intent compared to that without intent. Validation was performed on the BCI Competition III dataset by reducing the number of channels to 17 and 16 for subject A and subject B, with recognition quasi-departure rates of 96.93% and 94.93%, respectively, and on the BCI Competition II dataset by reducing the number of channels to 17 for subjects, with a recognition accuracy of 95.50%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0202770 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!