Solar radiation is scattered by cloud cover, aerosols and other particles in the atmosphere, all of which are affected by global changes. Furthermore, the diffuse fraction of solar radiation is increased by more frequent forest fires and likewise would be if climate interventions such as stratospheric aerosol injection were adopted. Forest ecosystem studies predict that an increase in diffuse radiation would result in higher productivity, but ecophysiological data are required to identify the processes responsible within the forest canopy. In our study, the response of a boreal forest to direct, diffuse and heterogeneous solar radiation conditions was examined during the daytime in the growing season to determine how carbon uptake is affected by radiation conditions at different scales. A 10-year data set of ecosystem, shoot and forest floor vegetation carbon and water-flux data was examined. Ecosystem-level carbon assimilation was higher under diffuse radiation conditions in comparison with direct radiation conditions at equivalent total photosynthetically active radiation (PAR). This was driven by both an increase in shoot and forest floor vegetation photosynthetic rate. Most notably, ecosystem-scale productivity was strongly related to the absolute amount of diffuse PAR, since it integrates both changes in total PAR and diffuse fraction. This finding provides a gateway to explore the processes by which absolute diffuse PAR enhances productivity, and the long-term persistence of this effect under scenarios of higher global diffuse radiation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.17275 | DOI Listing |
Sensors (Basel)
December 2024
Department of Computer Engineering, Konya Food and Agriculture University, Konya 42080, Turkey.
Contemporary environmental challenges are increasingly significant. The primary cause is the drastic changes in climates. The prediction of solar radiation is a crucial aspect of solar energy applications and meteorological forecasting.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
This study presents a novel approach for monitoring waste substrate digestion under high-density polyethylene (HDPE) geomembranes in sewage treatment plants. The method integrates infrared thermal imaging with a clustering algorithm to predict the distribution of various substrates beneath Traditional outdoor large-scale opaque geomembranes, using solar radiation as an excitation source. The technique leverages ambient weather conditions to assess the thermal responses of HDPE covers.
View Article and Find Full Text PDFSensors (Basel)
December 2024
SCAI Connect s.r.l., Via Vincenzo Lamaro 51, 00173 Rome, Italy.
The development and calibration of a measurement system designed for assessing the performance of the avalanche photodiodes (APDs) used in the Compton scattering polarimeter of the CUSP project is discussed in this work. The designed system is able to characterize the APD gain GAPD and energy resolution across a wide range of temperatures (from -20 °C to +60 °C) and bias voltages Vbias (from 260 V to 410 V). The primary goal was to experimentally determine the GAPD dependence on the and Vbias in order to establish a strategy for stabilizing GAPD by compensating for fluctuations, acting on Vbias.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Liuxia Street, Hangzhou 310023, China.
Broadcast ephemeris data are essential for the precision and reliability of the BeiDou Navigation Satellite System (BDS) but are highly susceptible to anomalies caused by various interference factors, such as ionospheric and tropospheric effects, solar radiation pressure, and satellite clock biases. Traditional threshold-based methods and manual review processes are often insufficient for detecting these complex anomalies, especially considering the distinct characteristics of different satellite types. To address these limitations, this study proposes an automated anomaly detection method using the IF-TEA-LSTM model.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Faculty of Engineering Mechanics, Khmelnytskyi National University, Instytuts'ka Str., 29016 Khmelnytskyi, Ukraine.
Life cycle analysis (LCA) is a popular tool for determining the environmental impacts of a product in use. The aim of this study is to carry out a life cycle analysis, gate-to-gate, of a mass packaging process using a polyethylene shrinking film with a focus on energy consumption, raw material use and associated emissions, and film post-consumer disposal scenarios. Two different scenarios for the disposal of the shrinking film used in the packaging process were analyzed, namely recycling and landfills.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!