Combined mild-temperature photothermal/chemotherapy has emerged as a highly promising modality for tumor therapy. However, its therapeutic efficacy is drastically compromised by the heat-induced overexpression of heat shock proteins (HSPs) by the cells, which resist heat stress and apoptosis. The purpose of this study was to downregulate HSPs and enhance the mild-temperature photothermal/chemotherapy effect. In detail, the colon cancer cell membrane (CT26M)-camouflaged HSP90 inhibitor ganetespib and the chemotherapeutic agent doxorubicin (DOX)-coloaded hollow mesoporous Prussian blue (HMPB) nanoplatform (named PGDM) were designed for synergistic mild photothermal/chemotherapy via HSP inhibition. In addition to being a photothermal agent with a high efficiency of photothermal conversion (24.13%), HMPB offers a hollow hole that can be filled with drugs. Concurrently, the cancer cell membrane camouflaging enhances tumor accumulation through a homologous targeting mechanism and gives the nanoplatform the potential to evade the immune system. When exposed to NIR radiation, HMPB's photothermal action (44 °C) not only causes tumor cells to undergo apoptosis but also causes ganetespib to be released on demand. This inhibits the formation of HSP90, which enhances the mild photothermal/chemotherapy effect. The results confirmed that the combined treatment regimen of mild photothermal therapy (PTT) and chemotherapy showed a better therapeutic efficacy than the individual treatment methods. Therefore, this multimodal nanoparticle can advance the development of drugs for the treatment of malignancies, such as colon cancer, and has prospects for clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c00873 | DOI Listing |
Int J Nanomedicine
August 2024
Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
Background: At present, the few photothermal/chemotherapy studies about retinoblastoma that have been reported are mainly restricted to ectopic models involving subcutaneous implantation. However, eyeball is unique physiological structure, the blood-retina barrier (BRB) hinders the absorption of drug molecules through the systemic route. Moreover, the abundant blood circulation in the fundus accelerates drug metabolism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Department of Oncology and Vascular Interventional Radiology, Zhongshan Hospital of Xiamen University, Xiamen 361004, P. R. China.
Combined mild-temperature photothermal/chemotherapy has emerged as a highly promising modality for tumor therapy. However, its therapeutic efficacy is drastically compromised by the heat-induced overexpression of heat shock proteins (HSPs) by the cells, which resist heat stress and apoptosis. The purpose of this study was to downregulate HSPs and enhance the mild-temperature photothermal/chemotherapy effect.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2023
Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China.
Patients with triple-negative breast cancer (TNBC) have the worst clinical outcomes when compared to other subtypes of breast cancer. Nanotechnology-assisted photothermal therapy (PTT) opens new opportunities for precise cancer treatment. However, thermoresistance caused by PTT, as well as uncertainty in the physiological metabolism of existing phototherapeutic nanoformulations, severely limit their clinical applications.
View Article and Find Full Text PDFInt J Pharm
February 2023
College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:
The clinical utility of 7-ethyl-10-hydroxycamptothecin (SN-38) is hampered by its low water solubility and reduced bioactivity at neutral or alkaline conditions. The rational design of an effective drug delivery system that can significantly enhance the therapeutic index of SN-38 and achieve complete tumor regression still remains a challenge. Herein, chitosan-based hybrid nanoparticles system co-loading with chemotherapeutic drug SN-38 and gold nanorods (AuNRs) was engineered for effective combinational photothermal-chemotherapy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China.
As an emerging antibacterial strategy, photothermal disinfection attracts increasing attention due to its advantages of high efficacy, wide pertinence, and non-drug resistance. However, the unavoidable shielding of observation by photothermal components and the possible damage to normal tissue caused by hyperthermia restrict its applications. Herein, we propose a composite hydrogel with the ability of on-demand generation of photothermal components and mild-temperature photothermal disinfection by elegantly tuning the binding and release of iodine and starch.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!