Linear response of molecular polaritons.

J Chem Phys

Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA.

Published: April 2024

In this article, we show that the collective light-matter strong coupling regime where N molecular emitters couple to the photon mode of an optical cavity can be mapped to a quantum impurity model where the photon is the impurity that is coupled to a bath of anharmonic transitions. In the thermodynamic limit where N ≫ 1, we argue that the bath can be replaced with an effective harmonic bath, leading to a dramatic simplification of the problem into one of the coupled harmonic oscillators. We derive simple analytical expressions for linear optical spectra (transmission, reflection, and absorption) where the only molecular input required is the molecular linear susceptibility. This formalism is applied to a series of illustrative examples, showing the role of temperature, disorder, vibronic coupling, and optical saturation of the molecular ensemble, explaining that it is useful even when describing an important class of nonlinear optical experiments. For completeness, we provide Appendixes A-C that include a self-contained derivation of the relevant spectroscopic observables for arbitrary anharmonic systems (for both large and small N) within the rotating-wave approximation. While some of the presented results herein have already been reported in the literature, we provide a unified presentation of the results as well as new interpretations that connect powerful concepts in open quantum systems and linear response theory with molecular polaritonics.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0183683DOI Listing

Publication Analysis

Top Keywords

linear response
8
molecular
6
linear
4
response molecular
4
molecular polaritons
4
polaritons article
4
article collective
4
collective light-matter
4
light-matter strong
4
strong coupling
4

Similar Publications

The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection.

View Article and Find Full Text PDF

Estimating the numbers and whereabouts of internally displaced people (IDP) is paramount to providing targeted humanitarian assistance. In conflict settings like the ongoing Russia-Ukraine war, on-the-ground data collection is nevertheless often inadequate to provide accurate and timely information. Satellite imagery may sidestep some of these challenges and enhance our understanding of the IDP dynamics.

View Article and Find Full Text PDF

The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.

View Article and Find Full Text PDF

Fast and sensitive multivalent spatial pattern-recognition for circular RNA detection.

Nat Commun

December 2024

Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing, China.

While circular RNAs (circRNAs) exhibit lower abundance compared to corresponding linear RNAs, they demonstrate potent biological functions. Nevertheless, challenges arise from the low concentration and distinctive structural features of circRNAs, rendering existing methods operationally intricate and less sensitive. Here, we engineer an intelligent tetrahedral DNA framework (TDF) possessing precise spatial pattern-recognition properties with exceptional sensing speed and sensitivity for circRNAs.

View Article and Find Full Text PDF

Purpose: To investigate 2-year changes in macular choroidal thickness (ChT) in children receiving 0.01% atropine eyedrops and its relationship with spherical equivalent refraction (SER) progression and axial length (AL) elongation.

Methods: A total of 250 myopic children aged 6-16 years (167%-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!