Mononuclear Rare-Earth Metalloligands Exploiting a Divergent Ligand.

Inorg Chem

Dipartimento di Chimica e Chimica Industriale and CIRCC, Università di Pisa, via Giuseppe Moruzzi 13, I-56124 Pisa, Italy.

Published: April 2024

Rare-earth tris-diketonato [RE(dike)pyterpy] metalloligands can be prepared reacting at room temperature [RE(dike)dme] (dme = 1,2-dimethoxyethane; dike = tta with Htta = 2-thenoyltrifluoroacetone and RE = La, ; Y, ; Eu, ; Dy, ; or dike = hfac with Hhfac hexafluoroacetylacetone, and RE = Eu, ; Tb, ; Yb ) with 4'-(4‴-pyridil)-2,2':6',2″-terpyridine (pyterpy). The molecular structures of , , , and have been studied through single-crystal X-ray diffraction showing mononuclear neutral complexes with the rare-earth ion in coordination number nine and with a muffin-like coordination geometry. [RE(tta)pyterpy] promptly reacts with [M(tta)dme] with formation of [Mpyterpy][RE(tta)] (M = Zn, RE = Y, ; M = Co, RE = Dy, ). Consistently, [Zn(hfac)dme] reacts at room temperature with 2 equiv of pyterpy yielding [Znpyterpy][hfac] that easily can be transformed by reaction with 2 equiv of [Eu(hfac)] in [Znpyterpy][Eu(hfac)] that has been structurally characterized. Finally, , , , , and metalloligands react at room temperature in few minutes with [PtCl(μ-Cl)PPh] yielding the heterometallic molecular complexes [RE(dike)pyterpyPtClPPh] (dike = tta, RE = La, ; Y, ; Eu; ; dike = hfac, RE = Eu, ; Yb, ).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c04532DOI Listing

Publication Analysis

Top Keywords

room temperature
12
dike tta
8
dike hfac
8
mononuclear rare-earth
4
rare-earth metalloligands
4
metalloligands exploiting
4
exploiting divergent
4
divergent ligand
4
ligand rare-earth
4
rare-earth tris-diketonato
4

Similar Publications

Aliphatic substrates-mediated unique rapid room temperature synthesis of carbon quantum dots for fenofibrate versatile analysis.

Anal Chim Acta

February 2025

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt. Electronic address:

Background: The current synthetic strategies for carbon dots (CDs) are usually time-consuming, rely on complicated processes, and need high temperatures and energy. Recent studies have successfully synthesized CDs at room temperature. Unfortunately, most CDs synthesized at room temperature are obtained under harsh reaction conditions, prepared using aromatic precursors, or need a long time to generate.

View Article and Find Full Text PDF

Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).

View Article and Find Full Text PDF

Construction of efficient ethylene removal and antibacterial cellulose paper-based packaging materials for avocado preservation.

Int J Biol Macromol

January 2025

Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada. Electronic address:

Fruits are susceptible to ethylene ripening and microbial infestation, which can lead to spoilage and further significant economic losses. Thus, using functional preservation materials is an effective controlling technology to improve the post-harvest quality and extend the shelf life of fruits. Hence, a dual-function cellulose-based paper with exceptional antibacterial efficiency, favourable ethylene removal performance, improved mechanical and hydrophobic properties was prepared by covalently grafted antibacterial guanidine salt and surface-modified ethylene scavenger.

View Article and Find Full Text PDF

The pharmaceutical quality of freeze-dried tablets containing therapeutic bacteriophages against Pseudomonas aeruginosa and Staphylococcus aureus.

Int J Pharm

January 2025

Department of Experimental Biology, Division of Genetics and Molecular Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic. Electronic address:

The preparation of a solid dosage form containing bacteriophages, which meets pharmaceutical requirements and ensures long-term stability of the phage effect, is significant for implementing phage therapy in practice. A commonly used method for processing phages into a solid form is freeze-drying into a (so-called) freeze-dried cake; however, to date there have been no studies examining the pharmacopeial parameters of freeze-dried tablets with bacteriophages. In this study, we describe the preparation and properties of freeze-dried tablets containing a cocktail of purified pseudomonal bacteriophage DSM 33593 from the genus Pbunavirus and staphylococcal bacteriophage DSM 33473 from the genus Kayvirus (10 PFU/tablet) as the active ingredient.

View Article and Find Full Text PDF

Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.

J Colloid Interface Sci

January 2025

Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China. Electronic address:

The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH to CHOH and CHCHOH at room temperature, in which VO·HO as the anodic catalyst to activate CH and an aprotic ionic liquid [BMIM]BF as supporting electrolyte to control superoxide radicals (O) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!