The Response Surface Methodology (RSM) was employed to examine the impact of the pumping system in a photovoltaic solar water pumping system, while operating under ideal conditions. The input parameters for optimizing the pump performance of the PV water pump include three parameters: Solar irradiance (550-950, W/m), temperature (30-45, °C), and voltage (420-540, V). The experimental values of PV water pump efficiency showed that the efficiency of PV water pumps was in the range of 55.24-80.80% of the experiment. At a solar irradiance of 750 W/m2, a voltage of 480 V and a temperature of 37.5 °C shows the maximum efficiency of the solar PV water pump systems was 80.80% under optimal conditions. This work demonstrates the potential of solar water pumps as a reliable, cost-effective, and environmentally friendly solution to support agriculture in remote areas. In addition, the costs and economic parameters of solar photovoltaic water pumps and conventional systems were compared by the social return on investment (SROI) evaluation. This indicates that sales are profitable or create social value that benefits society and local stakeholders in remote areas. This work demonstrates the potential of solar water pumps as a reliable, cost-effective, and environmentally friendly solution to support agriculture in remote areas.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016978 | PMC |
http://dx.doi.org/10.1016/j.dib.2024.110375 | DOI Listing |
Three months before the planned implementation of the European Union Regulation on Deforestation-free products, the European Commission proposed to postpone the implementation by twelve months. The announcement raised the temperature in the debate on this regulation. We put forward suggestions, based on scientific knowledge as well as current EUDR research and implementation projects, on how the 12-month phasing-in period could be used wisely to promote sustainability transitions in deforestation-risk value chains.
View Article and Find Full Text PDFChem Soc Rev
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.
View Article and Find Full Text PDFNat Commun
January 2025
iGaN Laboratory, School of Microelectronics, University of Science and Technology of China, Hefei, PR China.
The development of an efficient and durable photoelectrode is critical for achieving large-scale applications in photoelectrochemical water splitting. Here, we report a unique photoelectrode composed of reconfigured gallium nitride nanowire-on-silicon wafer loaded with Au nanoparticles as cocatalyst that achieved an impressive applied bias photon-to-current efficiency of 10.36% under AM 1.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.
Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Tyree Energy Technologies Building, 229 Anzac Parade, Kensington, NSW 2052, Australia.
An ideal water-splitting electrocatalyst is inexpensive, abundant, highly active, stable, selective, and durable. The anodic oxygen evolution reaction (OER) is the main bottleneck for H production with a complex and not fully resolved mechanism, slow kinetics, and high overpotential. Nickel oxide-based catalysts (NiO) are highly active and cheaper than precious metal catalysts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!