A green method based on magnetic micro-solid phase extraction (MNP-TW-μ-SPE) of tea waste impregnated with magnetic nanoparticles (MNP-TW) was developed for the extraction of ibuprofen (IBP) in water samples prior to UV-Vis spectrophotometric analysis. Experimenting parameters that affect the extraction efficiency of IBP, such as pH of the sample solution, sorbent dosage, extraction time, ionic strength, volume of the sample, type of desorption solvent, desorption time, and desorption volume, were studied and optimized in detail. The characterization studies for the MNP-TW were carried out by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction spectrometry (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) analysis, a vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). Under the optimum conditions, the linearity ranges from 30 to 700 μg L for IBP, with determination coefficients () of 0.9983. The limit of detection (LOD) and limit of quantification (LOQ) were 9.40 μg L and 28.50 μg L, respectively. The method also demonstrated good precision in reproducibility (RSD ≤ 1.53%), repeatability (RSD ≤ 1.48%), and recovery (86-115%). This method represents the advantages of low solvent consumption, flexibility, and better sensitivity compared to other studies employing spectrophotometric analysis. The usage of tea waste in the extraction process presents many advantages, as it is biodegradable, versatile, and contributes to an intelligent and sustainable economic strategy projected toward a circular economy approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017375 | PMC |
http://dx.doi.org/10.1039/d4ra00940a | DOI Listing |
Materials (Basel)
January 2025
Faculty of Technology Novi Sad, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia.
Herbal dust, a waste byproduct from filter-tea production, was annealed to form ash that can be incorporated into natural rubber as an eco-friendly filler. Three types of herbal dust ash (HDA), green tea, hibiscus, and lemon balm, were added at two different contents, 2.5 and 5 phr, into the rubber compound, while the content of carbon black, as a filler, was maintained at 50 phr in all samples.
View Article and Find Full Text PDFToxics
December 2024
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China.
Hexavalent chromium (Cr(VI)) contamination in soil presents significant risks due to its high toxicity to both the environment and human health. Renewable, low-cost natural materials offer promising solutions for Cr(VI) reduction and soil remediation. However, the effects of unmodified tea leaves and tea-derived biochar on chromium-contaminated soils remain inadequately understood.
View Article and Find Full Text PDFAntioxidants (Basel)
December 2024
Department of Nutrition and Dietetics, Faculty of Health Sciences, Beirut Arab University, Tarik El Jedidah, Riad El Solh, P.O. Box 115020, Beirut 1107 2809, Lebanon.
Tea, one of the most popular beverages worldwide, generates a substantial amount of spent leaves, often directly discarded although they may still contain valuable compounds. This study aims to optimize the extraction of polyphenols from spent black tea (SBT) and spent green tea (SGT) leaves while also exploring their antioxidant and antibacterial properties. Response surface methodology was utilized to determine the optimal experimental conditions for extracting polyphenols from SBT and SGT.
View Article and Find Full Text PDFBioresour Technol
December 2024
Department of Biological and Chemical Engineering, Aarhus University, Hangøvej 2, Aarhus 8200, Denmark; WATEC - Center for Water Technology, Aarhus University, Ny Munkegade 120, Aarhus 8000, Denmark. Electronic address:
ACS Omega
December 2024
Tea Chemistry and Pharmacology Laboratory, Department of Tea Science, University of North Bengal, Raja Rammohunpur, Bairatisal, Siliguri, West Bengal 734013, India.
Chemical pesticide residues have negative consequences for human health and the environment. Prioritizing a detection method that is both reliable and efficient is essential. Our innovative research explored the application of biosensors based on carbon quantum dots (CQDs) derived from waste tea to detect commonly used pesticides in tea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!