The bioaccessibility and bioavailability of phenolic compounds (PC) influence directly their role in disease prevention/control. Studies have evaluated this ability through complex plant and food matrices, which may reflect more a synergistic effect of the matrix than the ability of the PCs, hindering their individual exploitation in nutraceutical or pharmaceutical applications. In the present study ten pure PCs representing major classes were evaluated for their bioaccessibility and intestinal absorption in an simulated gastrointestinal digestion (SGD). This is the first study concerning the bioaccessibility evaluation of pure phloretin, phloroglucinol, naringin, naringenin and daidzein, while no SGD has been performed before for the other compounds considered here. PCs were analyzed through ultra-high-performance liquid chromatography coupled with diode-array detection and tandem mass spectrometry (UHPLC-DAD-MS). Most of the compounds remained present along the gastrointestinal tract, and the bioaccessibility was in general higher than 50%, except for quercetin, epigallocatechin gallate, and ellagic acid. All compounds were highly absorbed in the intestine, with phloretin showing the lowest percentage at about 82%. The study findings provide new knowledge on the bioaccessibility and intestinal absorption of different PCs classes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016601PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e28894DOI Listing

Publication Analysis

Top Keywords

bioaccessibility intestinal
12
intestinal absorption
12
major classes
8
phenolic compounds
8
simulated gastrointestinal
8
gastrointestinal digestion
8
compounds
5
bioaccessibility
5
exploring bioaccessibility
4
absorption major
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!