Objectives: Lymphovascular invasion serves as a crucial prognostic indicator in invasive breast cancer, influencing treatment decisions. We aimed to develop a machine learning model utilizing optimal volumes of interest extracted from multisequence magnetic resonance images to predict lymphovascular invasion in patients with invasive breast cancer.

Materials And Methods: This study comprised 191 patients postoperatively diagnosed with invasive breast cancer through multi-sequence magnetic resonance imaging. Independent predictors were identified through univariate and multivariate logistic regression analyses, culminating in the construction of a clinical model. Radiomic features were extracted from multi-sequence magnetic resonance imaging images across various volume of interest scales (-2 mm, entire, +2 mm, +4 mm, and +6 mm). Subsequently, various radiomic models were developed using machine learning model algorithms, including logistic regression, support vector machine, k-nearest neighbor, gradient boosting machine, classification and regression tree, and random forest. A hybrid model was then formulated, amalgamating optimal radiomic and clinical models.

Results: The area under the curve of the clinical model was 0.757. Among the radiomic models, the most efficient diagnosis was achieved by the k-nearest neighbor-based radiomics-volume of interest (+2 mm), resulting in an area under the curve of 0.780. The hybrid model, integrating the k-nearest neighbor-based radiomics-volume of interest (+2 mm), and the clinical model surpassed the individual clinical and radiomics models, exhibiting a superior area under the curve of 0.864.

Conclusion: Utilizing a hybrid approach integrating clinical data and multi-sequence magnetic resonance imaging-derived radiomics models based on the multiscale tumor region volume of interest (+2 mm) proved effective in determining lymphovascular invasion status in patients with invasive breast cancer. This innovative methodology may offer valuable insights for treatment planning and disease management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016709PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e29267DOI Listing

Publication Analysis

Top Keywords

invasive breast
20
lymphovascular invasion
16
breast cancer
16
magnetic resonance
16
machine learning
12
multi-sequence magnetic
12
clinical model
12
area curve
12
interest +2 mm
12
images predict
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!