Background: Violence in schizophrenia (SCZ) is a phenomenon associated with neurobiological factors. However, the neural mechanisms of violence in patients with SCZ are not yet sufficiently understood. Thus, this study aimed to explore the structural changes associated with the high risk of violence and its association with impulsiveness in patients with SCZ to reveal the possible neurobiological basis.
Method: The voxel-based morphometry approach and whole-brain analyses were used to measure the alteration of gray matter volume (GMV) for 45 schizophrenia patients with violence (VSC), 45 schizophrenia patients without violence (NSC), and 53 healthy controls (HC). Correlation analyses were used to examine the association of impulsiveness and brain regions associated with violence.
Results: The results demonstrated reduced GMV in the right insula within the VSC group compared with the NSC group, and decreased GMV in the right temporal pole and left orbital part of superior frontal gyrus only in the VSC group compared to the HC group. Spearman correlation analyses further revealed a positive correlation between impulsiveness and GMV of the left superior temporal gyrus, bilateral insula and left medial orbital part of the superior frontal gyrus in the VSC group.
Conclusion: Our findings have provided further evidence for structural alterations in patients with SCZ who had engaged in severe violence, as well as the relationship between the specific brain alterations and impulsiveness. This work provides neural biomarkers and improves our insight into the neural underpinnings of violence in patients with SCZ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017613 | PMC |
http://dx.doi.org/10.1186/s12888-024-05721-3 | DOI Listing |
Tzu Chi Med J
August 2024
Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
Schizophrenia (SCZ) is a chronic psychotic disorder that profoundly alters an individual's perception of reality, resulting in abnormal behavior, cognitive deficits, thought distortions, and disorientation in emotions. Many complicated factors can lead to SCZ, and investigations are ongoing to understand the neurobiological underpinnings of this condition. Presynaptic Netrin G1 and its cognate partner postsynaptic Netrin-G-Ligand-1 (NGL-1) have been implicated in SCZ.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
January 2025
Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Recent studies have showed aberrant connectivity of cerebello-thalamo-cortical circuit (CTCC) in schizophrenia (SCZ), which might be a heritable trait. However, these individual studies vary greatly in their methods and findings, and important areas within CTCC and related genetic mechanism are unclear. We searched for consistent regions of circuit dysfunction using a functional magnetic resonance imaging (fMRI) meta-analysis, followed by meta-regression and functional annotation analysis.
View Article and Find Full Text PDFSchizophrenia (Heidelb)
January 2025
Xinjiang Clinical Medical Research Center of Mental Health, State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Oxidative stress (OS) is crucial in schizophrenia (SCZ) pathology. Ferroptosis, a recently discovered cell death pathway linked to OS, might contribute to the development of SCZ. This study investigated the association between ferroptosis markers and cognitive impairments in chronic SCZ patients.
View Article and Find Full Text PDFPsychiatry Res
February 2025
Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China. Electronic address:
Background: Auditory verbal hallucinations (AVHs) in schizophrenia (SCZ) are linked to brain network abnormalities. Resting-state fMRI studies often assume stable networks during scans, yet dynamic changes related to AVHs are not well understood.
Methods: We analyzed resting-state fMRI data from 60 SCZ patients with persistent AVHs (p-AVHs), 39 SCZ patients without AVHs (n-AVHs), and 59 healthy controls (HCs), matched for demographics.
Neuronal connection dysfunction is a convergent cause of cognitive deficits in mental disorders. Cognitive processes are finely regulated at the synaptic level by membrane proteins, some of which are shed and detectable in patients' cerebrospinal fluid (CSF). However, whether these soluble synaptic proteins can harnessed as innovative pro-cognitive factors to treat brain disorders remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!