Correlated evolution between body size and echolocation in bats (order Chiroptera).

BMC Ecol Evol

Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Calle Tulipán s/n, Móstoles, Madrid, Spain.

Published: April 2024

Background: Body size and echolocation call frequencies are related in bats. However, it is unclear if this allometry applies to the entire clade. Differences have been suggested between nasal and oral emitting bats, as well as between some taxonomic families. Additionally, the scaling of other echolocation parameters, such as bandwidth and call duration, needs further testing. Moreover, it would be also interesting to test whether changes in body size have been coupled with changes in these echolocation parameters throughout bat evolution. Here, we test the scaling of peak frequency, bandwidth, and call duration with body mass using phylogenetically informed analyses for 314 bat species. We specifically tested whether all these scaling patterns differ between nasal and oral emitting bats. Then, we applied recently developed Bayesian statistical techniques based on large-scale simulations to test for the existence of correlated evolution between body mass and echolocation.

Results: Our results showed that echolocation peak frequencies, bandwidth, and duration follow significant allometric patterns in both nasal and oral emitting bats. Changes in these traits seem to have been coupled across the laryngeal echolocation bats diversification. Scaling and correlated evolution analyses revealed that body mass is more related to peak frequency and call duration than to bandwidth. We exposed two non-exclusive kinds of mechanisms to explain the link between size and each of the echolocation parameters.

Conclusions: The incorporation of Bayesian statistics based on large-scale simulations could be helpful for answering macroevolutionary patterns related to the coevolution of traits in bats and other taxonomic groups.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017568PMC
http://dx.doi.org/10.1186/s12862-024-02231-4DOI Listing

Publication Analysis

Top Keywords

correlated evolution
12
body size
12
size echolocation
12
nasal oral
12
oral emitting
12
emitting bats
12
call duration
12
body mass
12
evolution body
8
echolocation bats
8

Similar Publications

Biophysical effects of croplands on land surface temperature.

Nat Commun

December 2024

Department of Natural Resources and the Environment, University of Connecticut, Storrs, CT, USA.

Converting natural vegetation to croplands alters the local land surface energy budget. Here, we use two decades of satellite data and a physics-based framework to analyse the biophysical mechanisms by which croplands influence daily mean land surface temperature (LST). Globally, 60% of croplands exhibit an annual warming effect, while 40% have a cooling effect compared to their surrounding natural ecosystems.

View Article and Find Full Text PDF

Short tandem repeats delineate gene bodies across eukaryotes.

Nat Commun

December 2024

Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.

Short tandem repeats (STRs) have emerged as important and hypermutable sites where genetic variation correlates with gene expression in plant and animal systems. Recently, it has been shown that a broad range of transcription factors (TFs) are affected by STRs near or in the DNA target binding site. Despite this, the distribution of STR motif repetitiveness in eukaryote genomes is still largely unknown.

View Article and Find Full Text PDF

The relationship between intra-specific and inter-specific patterns and processes over evolutionary time is key to ecological investigations. We examine this relationship taking an approach of focussing on the association between vegetation and floristic classifications, summaries of inter-specific processes, and intra-specific genetic structuring. Applying an innovative, multispecies, and standardised population genomic approach, we test the relationship between vegetation mapping schemes and structuring of genetic variation across a large, environmentally heterogenous region in eastern Australia.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) are considered advanced class materials due to their exotic structural and optical properties. The abundance of starting monomers with variable linkage motifs may give rise to multiple conformations in either 2D or 3D fashion. Tailoring of the abovementioned properties has facilitated the application of COFs in a wide range of applications, which are strongly correlated with energy conversion schemes.

View Article and Find Full Text PDF

Eusociality, characterized by reproductive division of labor, cooperative brood care, and multi-generational cohabitation, represents a pinnacle of complex social evolution, most notably manifested within the Hymenoptera order including bees, ants, and wasps. The molecular underpinnings underlying these sophisticated social structures remain an enigma, with noncoding RNAs (ncRNAs) emerging as crucial regulatory players. This article delves into the roles of ncRNAs in exerting epigenetic control during the development and maintenance of Hymenopteran eusociality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!