Advanced glycation end products (AGEs) can disrupt antioxidant system and steroidogenesis, resulting in detrimental effects on assisted reproductive technology (ART) outcomes. This study aimed to investigate the association of AGEs in follicular fluid (FF) with morphokinetic parameters of embryos and ART outcomes. Fifty women undergoing ART treatment were studied. AGEs, glucose, 25(OH) vitamin D, malondialdehyde (MDA) levels and catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPX) activities were evaluated in FF. The expression of 3βHSD, CYP11A1, and CYP19A1 genes were analyzed in granulosa cells (GCs) by qRT-PCR technique. Morphokinetic parameters were evaluated using time-lapse technology. The FF level of AGEs was reversely associated with CAT, SOD, and GPX activities, and total and mature oocytes number, blastocyst formation rate, and high-grade embryos number, while it showed positive correlations with the FF MDA levels, the expression of steroidogenesis genes, number of immature oocytes, morphokinetic parameters, and number of low-grade embryos. Furthermore, the level of vitamin D in FF had an inverse association with AGEs and positive correlations with ART outcomes and morphokinetic parameters. Comparison between the those with positive and negative biochemical pregnancy showed no significant differences in terms of FF factors and just the expression of 3βHSD, CYP11A1, and CYP19A1 genes were higher in pregnant women (p < 0.05). AGEs could delay blastomere division and lead to an increase in the number of low-quality embryos, while vitamin D have an adverse effect on AGEs and a protective function against AGEs negative effects.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-024-01552-5DOI Listing

Publication Analysis

Top Keywords

morphokinetic parameters
20
art outcomes
16
advanced glycation
8
follicular fluid
8
association ages
8
mda levels
8
gpx activities
8
expression 3βhsd
8
3βhsd cyp11a1
8
cyp11a1 cyp19a1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!