In this study, a facile method for multifunctional surface modification on forward osmosis (FO) membrane was constructed by surface immobilization of AgNPs based on tannic acid (TA)/diethylenetriamine (DETA) precursor layer. The cellulose triacetate (CTA) FO membranes modified by TA and DETA with different co-deposition time (6 h, 12 h, 24 h) were investigated. Results indicated that the TA/DETA (24)-Ag CTA membrane with a TA/DETA co-deposition time of 24 h was identified to be optimal, which attained more hydrophilic. And it had the bacterial mortality of Escherichia coli and Staphylococcus aureus reaching 98.23% and 99.83% respectively and possessed excellent physical and chemical binding stability. Meanwhile, the coating layer resulted in the antifouling ability without damaging the membrane intrinsic transport characteristics. As for synthetic municipal wastewater treatment, the water flux of CTA FO membrane decreased approximately 49% of the initial flux after running for 14 days. In contrast, the flux decline rate of TA/DETA (24)-Ag CTA membrane was about 37%. Furthermore, less foulant deposition and higher recovery rate of water flux was observed for TA/DETA (24)-Ag CTA membrane, implying that the modified membrane effectively alleviated membrane fouling and processed a lower flux decline during municipal wastewater treatment. It was attributed to the enhanced surface hydrophilicity and antibacterial property of the coating layer, which improved antifouling property.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-024-33312-y | DOI Listing |
J Cardiothorac Surg
December 2024
Department of Critical Care, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, China.
Background: Veno-arterial (V-A) extracorporeal membrane oxygenation (ECMO) is commonly used for patients with cardiac arrest, cardiogenic shock, or heart failure and is a life-saving technique. Computed tomography angiography (CTA) examination in patients on ECMO presents certain challenges. Due to the dual circulation characteristics of blood flow in ECMO patients, vascular imaging and interpretation can be difficult and may even present pitfalls.
View Article and Find Full Text PDFAm J Transl Res
November 2024
Department of Radioactive Intervention, Henan No. 3 Provincial People's Hospital Zhengzhou 450006, Henan, China.
ECMO is an advanced technology for extracorporeal respiratory and circulatory support. It involves the extraction of venous blood from the patient's body, which is subsequently oxygenated within an oxygenator (or membrane lung). This oxygen-rich blood is reinfused either into veins or arteries, rapidly compensating for impaired lung and heart functionalities.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Colloids and Polymers Physics Group, Department of Applied Physics, Faculty of Physics and Institute of Materials (iMATUS) and Institute of Health Research (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
Current models for elastin-like recombinamer (ELR) design struggle to predict the effects of nonprotein fused materials on polypeptide conformation and temperature-responsive properties. To address this shortage, we investigated the novel functionalization of ELRs with cholesterol (CTA). We employed GROMACS computational molecular dynamic simulations complemented with experimental evidence to validate the predictions.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2025
Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada; Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada. Electronic address:
Proteins are fundamental to biochemical processes and critical in hemodialysis. This study investigates the impact of pH on human serum albumin (HSA), fibrinogen (FB), and transferrin (TRF) interactions with polyarylethersulfone (PAES) hemodialysis membranes. A multi-method approach was utilized, including protein crystallography for structural insights, hydration layer analysis to explore solvation and interaction potentials, molecular docking using AutoDock 4.
View Article and Find Full Text PDFJ Clin Med
October 2024
Division of Brain Sciences, Imperial College London, London SW7 2AZ, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!