A magnon is a collective excitation of the spin structure in a magnetic insulator and can transmit spin angular momentum with negligible dissipation. This quantum of a spin wave has always been manipulated through magnetic dipoles (that is, by breaking time-reversal symmetry). Here we report the experimental observation of chiral spin transport in multiferroic BiFeO and its control by reversing the ferroelectric polarization (that is, by breaking spatial inversion symmetry). The ferroelectrically controlled magnons show up to 18% modulation at room temperature. The spin torque that the magnons in BiFeO carry can be used to efficiently switch the magnetization of adjacent magnets, with a spin-torque efficiency comparable to the spin Hall effect in heavy metals. Utilizing such controllable magnon generation and transmission in BiFeO, an all-oxide, energy-scalable logic is demonstrated composed of spin-orbit injection, detection and magnetoelectric control. Our observations open a new chapter of multiferroic magnons and pave another path towards low-dissipation nanoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41563-024-01854-8DOI Listing

Publication Analysis

Top Keywords

chiral spin
8
spin transport
8
ferroelectric polarization
8
spin
7
manipulating chiral
4
transport ferroelectric
4
polarization magnon
4
magnon collective
4
collective excitation
4
excitation spin
4

Similar Publications

Ultrafast chirality-dependent dynamics from helicity-resolved transient absorption spectroscopy.

Nanoscale

January 2025

State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, P.R. China.

Chirality, a pervasive phenomenon in nature, is widely studied across diverse fields including the origins of life, chemical catalysis, drug discovery, and physical optoelectronics. The investigations of natural chiral materials have been constrained by their intrinsically weak chiral effects. Recently, significant progress has been made in the fabrication and assembly of low-dimensional micro and nanoscale chiral materials and their architectures, leading to the discovery of novel optoelectronic phenomena such as circularly polarized light emission, spin and charge flip, advocating great potential for applications in quantum information, quantum computing, and biosensing.

View Article and Find Full Text PDF

Chiral Metal Coating to Enhance Water Electrolysis.

Energy Fuels

January 2025

Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel.

Producing hydrogen through water splitting often faces challenges of overpotential, stability, and expensive catalysts, which limit its efficiency and hinder the advancement of hydrogen production technologies. Nickel foam and nickel meshes have emerged as promising materials for electrolyzer electrodes due to their high surface area and the ability to produce electrolyzers with a very small gap between the anode and cathode. This study presents a simple method for coating Ni-based electrodes with a chiral Ni-Au film, using electroplating, thus enhancing its efficiency dramatically.

View Article and Find Full Text PDF

Designing Chiral Organometallic Nanosheets with Room-Temperature Multiferroicity and Topological Nodes.

Nano Lett

January 2025

Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, Anhui 230031, China.

Two-dimensional (2D) room-temperature chiral multiferroic and magnetic topological materials are essential for constructing functional spintronic devices, yet their number is extremely limited. Here, by using the chiral and polar HPP (HPP = 4-(3-hydroxypyridin-4-yl)pyridin-3-ol) as an organic linker and transition metals (TM = Cr, Mo, W) as nodes, we predict a class of 2D TM(HPP) organometallic nanosheets that incorporate homochirality, room-temperature magnetism, ferroelectricity, and topological nodes. The homochirality is introduced by chiral HPP linkers, and the change in structural chirality induces a topological phase transition of Weyl phonons.

View Article and Find Full Text PDF

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

Nonvolatile Magnonics in Bilayer Magnetic Insulators.

Nano Lett

January 2025

Smart Ferroic Materials Center, Physics Department and Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701, United States.

Nonvolatile control of spin order or spin excitations offers a promising avenue for advancing spintronics; however, practical implementation remains challenging. In this Letter, we propose a general framework to realize electrical control of magnons in 2D magnetic insulators. We demonstrate that in bilayer ferromagnetic insulators with strong spin-layer coupling, the electric field can effectively manipulate the spin exchange interactions between the layers, enabling nonvolatile control of the corresponding magnons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!