Differentiation of adipose progenitor cells into mature adipocytes entails a dramatic reorganization of the cellular architecture to accommodate lipid storage into cytoplasmic lipid droplets. Lipid droplets occupy most of the adipocyte volume, compressing the nucleus beneath the plasma membrane. How this cellular remodeling affects sub-nuclear structure, including size and number of nucleoli, remains unclear. We describe the morphological remodeling of the nucleus and the nucleolus during in vitro adipogenic differentiation of primary human adipose stem cells. We find that cell cycle arrest elicits a remodeling of nucleolar structure which correlates with a decrease in protein synthesis. Strikingly, triggering cytoskeletal rearrangements mimics the nucleolar remodeling observed during adipogenesis. Our results point to nucleolar remodeling as an active, mechano-regulated mechanism during adipogenic differentiation and demonstrate a key role of the actin cytoskeleton in defining nuclear and nucleolar architecture in differentiating human adipose stem cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018602 | PMC |
http://dx.doi.org/10.1038/s42003-024-06153-1 | DOI Listing |
Biochem Biophys Res Commun
January 2025
Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:
Intranuclear protein quality control (PQC) is critical for protein homeostasis (or proteostasis) in non-dividing cells including brain nerve cells, but its molecular mechanism remains unresolved. In nutrient-starved conditions, elimination of nucleolar proteins is critical for cell viability in budding yeast, providing a model system to study the mechanisms involved in intranuclear PQC. The nuclear-specific endosomal sorting complex required for transport (ESCRT) CHMP7/Chm7 is linked to neurodegenerative diseases, but its known role is limited.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan; Course of Biological Science, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8021, Japan. Electronic address:
Endosomal sorting complex required for transport (ESCRT) is required for maintenance of nuclear functions and prevention of neurodegenerative diseases. The budding yeast Saccharomyces cerevisiae is an ideal model for studying ESCRT-dependent diseases. Nucleolar proteins are degraded by macronucleophagy and micronucleophagy after nutrient depletion and inactivation of target of rapamycin complex 1 (TORC1) kinase.
View Article and Find Full Text PDFPathol Res Pract
November 2024
School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab 144411, India. Electronic address:
Non-coding RNAs have gathered significant attention for their unique roles in biological regulation. Across a broad spectrum of developmental processes and diseases, particularly in human malignancies, ncRNAs play pivotal roles in regulatory mechanisms. MicroRNAs, long noncoding RNAs, and small nucleolar RNAs stand out among the diverse forms of ncRNAs that have been implicated in cancer.
View Article and Find Full Text PDFHeliyon
September 2024
Gerontology and Anti-Aging Research Laboratory, Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong Province, China.
Microbiol Spectr
October 2024
Department of Infection Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan.
Unlabelled: Recent evidence has revealed that the reorganization of nuclear domains is largely mediated by liquid-liquid phase separation (LLPS). During viral infection, numerous nuclear domains undergo significant changes through LLPS for and against the replication of the virus. However, the regulatory mechanism of LLPS in response to viral infection and its detailed functions in viral replication remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!