A new type of silicon-based Mach-Zehnder interference (MZI) temperature sensor chip with "mosquito coil" structure was designed. The sensor chip used a new MZI interference structure. After the light entered the chip, it split and interfered in the combiner of the chip. The change in the surrounding temperature will cause the refractive index of the waveguide to change, which will cause the output light intensity to change. The sensor used a frequency stabilized laser that was based on a Bragg grating fiber. The experimental results showed that this structure could achieve a resolution of 0.002 °C and measuring range of 30 °C.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018610 | PMC |
http://dx.doi.org/10.1038/s41598-024-59447-z | DOI Listing |
The cross talk and power consumption of the 2 × 2 optical switch is a key metric in the design of large-scale photonic integrated circuits (PICs). We build a theoretical model of a 2 × 2 Mach-Zehnder interferometer (MZI) optical switch, taking into account both imbalances in the arm loss and the coupler splitting ratio. The splitting ratio imbalance requirement for a given switch cross talk is summarized, which provides a guideline for the switch design.
View Article and Find Full Text PDFPolarization-insensitive photonic switches are crucial for the case with random polarization states encountered in optical systems. In this paper, we propose and demonstrate a polarization-insensitive 2 × 2 thermo-optic Mach-Zehnder switch (PIMZS) on a 340-nm silicon-on-insulator (SOI) platform by incorporating low-loss polarization-insensitive multimode interference (PIMMI) couplers whose core width is varied optimally. The fabricated 2 × 2 PIMZS exhibits a low excess loss of 0.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China.
A wavelength-switchable ytterbium-doped mode-locked fiber laser is reported in this article. Two Mach-Zehnder interferometers (MZIs, denoted as MZI1, MZI2) with close free spectral ranges (FSRs) are connected in series to form a Vernier effect sensor. By utilizing the filtering effect of the Vernier effect sensor, the wavelength-switchable output of an ytterbium-doped mode-locked fiber laser is realized.
View Article and Find Full Text PDFOptical interferometric accelerometers are widely used in seismic monitoring, petroleum resources exploration, and structural health monitoring due to their low noise floor and resistance to electromagnetic interference (EMI). However, their small working range limits further applications. To broaden the working range of the sensor while ensuring the inherent anti-electromagnetic interference capability of the optical sensor, this paper proposes an orthogonal optical path (OP) range broadening scheme (OORBS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!