The applications of terahertz metamaterials are being actively explored in recent times for applications in high-speed communication devices, miniature photonic circuits, and bio-chemical devices because of their wide advantages. The toroidal resonance, a new type of metasurface resonance, has been examined with great interest to utilize its properties in terahertz metasurface applications. This study reports a proof of concept design of a toroidal metasurface that experimentally demonstrates binary computing operations in the terahertz frequency regime. The analog computing of binary operations is achieved by the passive tuning of distance between the split ring resonators comprising the meta-molecule. The amplitude modulation is utilized as a method of determining the Boolean logic outputs of the system. The proposed metasurface could be further optimized for high amplitude modulations and active logic gate operations using tunable materials including graphene and ITO. The proposed metasurface consists of three split-ring resonators, and the near-field coupling between the adjacent resonators dictates the Boolean operations. A multipole analysis of the scattered powers of terahertz radiation determines the toroidal excitation in the metasurface. The proposed metasurfaces experimentally define AND Boolean logic operation at 0.89 terahertz, and OR Boolean logic operation at 0.97 terahertz. Numerical simulations support the experimentally obtained results. Additionally, we numerically report the excitation of NAND operation at 0.87 THz. Such toroidal analog computing metasurfaces could find applications in digitized terahertz circuits and integrated photonic devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018751 | PMC |
http://dx.doi.org/10.1038/s41598-024-59069-5 | DOI Listing |
Understanding the heterogeneity of epigenetic modifications within single cells is pivotal for unraveling the nature of the complexity of gene expression and cellular function. In this study, we have developed a strategy based on multichrome encoding and "AND" Boolean logic recognition for multiplexed, spatially resolved imaging of single-cell RNA epigenetic modifications, termed as PRoximity Exchange-assisted Encoding of Multichrome (PREEM). Through the implementation of this strategy, we can now map the expression and nuclear distribution of multiple site-specific RNA N6-methyladenosine (mA) modifications at the single-molecule resolution level in single-cells, and reveal the previously unknown heterogeneity.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China.
In the era of artificial intelligence, there has been a rise in novel computing methods due to the increased demand for rapid and effective data processing. It is of great significance to develop memristor devices capable of emulating the computational neural network of the brain, especially in the realm of artificial intelligence applications. In this work, a memristor based on NiAl-layered double hydroxides is presented with excellent electrical performance, including analog resistive conversion characteristics and the effect of multi-level conductivity modulation.
View Article and Find Full Text PDFCurr Opin Biotechnol
January 2025
Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Medicine and School of Life Sciences, Westlake University, 310024 Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, 310024 Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 310024 Hangzhou, Zhejiang, China; School of Engineering, Westlake University, 310030 Hangzhou, Zhejiang, China. Electronic address:
Biocomputation aims to create sophisticated biological systems capable of addressing important problems in (bio)medicine with a machine-like precision. At present, computational gene networks engineered by single- or multi-layered assembly of DNA-, RNA- and protein-level gene switches have allowed bacterial or mammalian cells to perform various regulation logics of interest, including Boolean calculation or neural network-like computing. This review highlights the molecular building blocks, design principles, and computational tasks demonstrated by current biocomputers, before briefly discussing possible fields where biological computers may ultimately outcompete their electronic counterparts and achieve cellular supremacy.
View Article and Find Full Text PDFPLoS Negl Trop Dis
January 2025
Institute of Life, Earth and Environment (ILEE), University of Namur, Namur, Belgium.
Background: Viral haemorrhagic fevers (VHFs) are identified by international health authorities as priorities for research and development, as they pose a threat to global health and economy. VHFs are zoonotic diseases whose acute forms in humans present a haemorrhagic syndrome and shock, with mortality rates of up to 90%. This work aims at synthetizing existing knowledge on spatial and spatially aggregable determinants that support the emergence and maintenance of VHFs in African countries covered by tropical moist forest, to better identify and map areas at risk.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
January 2025
Microsystems Group, School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
The increasing demand for processing large volumes of data for machine learning (ML) models has pushed data bandwidth requirements beyond the capability of traditional von Neumann architecture. In-memory computing (IMC) has recently emerged as a promising solution to address this gap by enabling distributed data storage and processing at the micro-architectural level, significantly reducing both latency and energy. In this article, we present In-Memory comPuting architecture based on Y-FlAsh technology for Coalesced Tsetlin machine inference (IMPACT), underpinned on a cutting-edge memory device, Y-Flash, fabricated on a 180 nm complementary metal oxide semiconductor (CMOS) process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!