Mechanical abuse can lead to internal short circuits and thermal runaway in lithium-ion batteries, causing severe harm. Therefore, this paper systematically investigates the thermal runaway behavior and safety assessment of lithium iron phosphate (LFP) batteries under mechanical abuse through experimental research. Mechanical abuse experiments are conducted under different conditions and battery state of charge (SOC), capturing force, voltage, and temperature responses during failure. Subsequently, characteristic parameters of thermal runaway behavior are extracted. Further, mechanical abuse conditions are quantified, and the relationship between experimental conditions and battery characteristic parameters is analyzed. Finally, regression models for battery safety boundaries and the degree of thermal runaway risk are established. The research results indicate that the extracted characteristic parameters effectively reflect internal short circuit (ISC) and thermal runaway behaviors, and the regression models provide a robust description of the battery's safety boundaries and thermal runaway risk degree. This work sheds light on understanding thermal runaway behavior and safety assessment methods for lithium-ion cells under mechanical abuse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018818PMC
http://dx.doi.org/10.1038/s41598-024-58891-1DOI Listing

Publication Analysis

Top Keywords

thermal runaway
32
mechanical abuse
24
runaway behavior
16
safety assessment
12
characteristic parameters
12
thermal
8
runaway
8
lithium iron
8
iron phosphate
8
batteries mechanical
8

Similar Publications

Noble metal (Pd, Pt)-functionalized WSe monolayer for adsorbing and sensing thermal runaway gases in LIBs: a first-principles investigation.

Environ Res

January 2025

College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China; CHN Energy group Qinghai Electric Power Co., LTD, Xining, Qinghai, 810008, China. Electronic address:

This research using the first-principles theory introduces Pd- and Pt-functionalized WSe monolayers as promising materials for detecting three critical gases (H, CO, and CH), to evaluate the health of Li-ion battery (LIBs). Various sites on the pristine WSe monolayer are considered for the functionalization with Pd and Pt atoms. The adsorption performances of the determined Pd- and Pt-WSe monolayers upon the three gases are analyzed by the comparative highlight of the adsorption energy, bonding behavior and electron transfer.

View Article and Find Full Text PDF

Lithium-ion batteries (LIBs) have broad application prospects in many fields because of their high energy density. However, the poor heat resistance of polyolefin membranes and uneven lithium deposition result in battery failure and even infamous thermal runaway behavior. To improve the intrinsic safety of batteries, fire-retardant, thermally conductive, electrospinning strategies are employed to acquire a functional polyacrylonitrile (PAN) nanofiber separator (PAN@FBN/TPP) containing modified boron nitride (FBN) and triphenyl phosphate (TPP).

View Article and Find Full Text PDF

A Highly Impact-Tolerant Textile-Based Lithium-Ion Battery.

ACS Appl Mater Interfaces

January 2025

Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia.

Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.

View Article and Find Full Text PDF

Low-Cost Intrinsic Flame-Retardant Bio-Based High Performance Polyurethane and its Application in Triboelectric Nanogenerators.

Adv Sci (Weinh)

December 2024

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Key Laboratory of Lightweight Composite, Shanghai Engineering Research Center of Nano Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China.

Flammability is a significant challenge in polymer-based electronics. In this regard, triboelectric nanogenerators (TENGs) have enabled a safe means for harvesting mechanical energy for conversion into electrical energy. However, most existing polymers used for TENGs are sourced from petroleum-based raw materials and are highly flammable, which can further accelerate the spread of fire and harm the ecological environment.

View Article and Find Full Text PDF

Dataset of mechanically induced thermal runaway measurement and severity level on Li-ion batteries.

Data Brief

August 2024

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA.

The deployment of Li-ion batteries covers a wide range of energy storage applications, from mobile phones, e-bikes, electric vehicles (EV) to stationary energy storage systems. However, safety issue such as thermal runaway is always one of the most important concerns preventing Li-ion batteries from further market penetration. A standardized single-side indentation test protocol was developed to mechanically induce an internal short-circuit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!