The objective of this study is to define structure-function relationships of pathological lesions related to age-related macular degeneration (AMD) using microperimetry and multimodal retinal imaging. We conducted a cross-sectional study of 87 patients with AMD (30 eyes with early and intermediate AMD and 110 eyes with advanced AMD), compared to 33 normal controls (66 eyes) recruited from a single tertiary center. All participants had enface and cross-sectional optical coherence tomography (Heidelberg HRA-2), OCT angiography, color and infra-red (IR) fundus and microperimetry (MP) (Nidek MP-3) performed. Multimodal images were graded for specific AMD pathological lesions. A custom marking tool was used to demarcate lesion boundaries on corresponding enface IR images, and subsequently superimposed onto MP color fundus photographs with retinal sensitivity points (RSP). The resulting overlay was used to correlate pathological structural changes to zonal functional changes. Mean age of patients with early/intermediate AMD, advanced AMD and controls were 73(SD = 8.2), 70.8(SD = 8), and 65.4(SD = 7.7) years respectively. Mean retinal sensitivity (MRS) of both early/intermediate (23.1 dB; SD = 5.5) and advanced AMD (18.1 dB; SD = 7.8) eyes were significantly worse than controls (27.8 dB, SD = 4.3) (p < 0.01). Advanced AMD eyes had significantly more unstable fixation (70%; SD = 63.6), larger mean fixation area (3.9 mm; SD = 3.0), and focal fixation point further away from the fovea (0.7 mm; SD = 0.8), than controls (29%; SD = 43.9; 2.6 mm; SD = 1.9; 0.4 mm; SD = 0.3) (p ≤ 0.01). Notably, 22 fellow eyes of AMD eyes (25.7 dB; SD = 3.0), with no AMD lesions, still had lower MRS than controls (p = 0.04). For specific AMD-related lesions, end-stage changes such as fibrosis (5.5 dB, SD = 5.4 dB) and atrophy (6.2 dB, SD = 7.0 dB) had the lowest MRS; while drusen and pigment epithelial detachment (17.7 dB, SD = 8.0 dB) had the highest MRS. Peri-lesional areas (20.2 dB, SD = 7.6 dB) and surrounding structurally normal areas (22.2 dB, SD = 6.9 dB) of the retina with no AMD lesions still had lower MRS compared to controls (27.8 dB, SD = 4.3 dB) (p < 0.01). Our detailed topographic structure-function correlation identified specific AMD pathological changes associated with a poorer visual function. This can provide an added value to the assessment of visual function to optimize treatment outcomes to existing and potentially future novel therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11018739PMC
http://dx.doi.org/10.1038/s41598-024-54619-3DOI Listing

Publication Analysis

Top Keywords

advanced amd
12
age-related macular
8
macular degeneration
8
pathological lesions
8
amd
8
retinal sensitivity
8
defining structure-function
4
structure-function relationship
4
relationship specific
4
specific lesions
4

Similar Publications

Biodegradable polymeric microsphere formulations of full-length anti-VEGF antibody bevacizumab for sustained intraocular delivery.

Drug Deliv Transl Res

January 2025

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.

Age-related macular degeneration (AMD) is one of the leading causes of central vision loss in the elderly population. Bevacizumab, a full-length humanized monoclonal anti-VEGF antibody, is commonly used off-label drug to treat AMD. However, the dosing regimen of bevacizumab and other anti-VEGF antibodies requires monthly intravitreal injections followed by regular intravitreal injections at 4-16-week intervals.

View Article and Find Full Text PDF

Bipolar disorder is a leading contributor to the global burden of disease. Despite high heritability (60-80%), the majority of the underlying genetic determinants remain unknown. We analysed data from participants of European, East Asian, African American and Latino ancestries (n = 158,036 cases with bipolar disorder, 2.

View Article and Find Full Text PDF

Background: Age-related macular degeneration (AMD) represents a significant clinical concern, particularly in aging populations, and recent advancements in artificial intelligence (AI) have catalyzed substantial research interest in this domain. Despite the growing body of literature, there remains a need for a comprehensive, quantitative analysis to delineate key trends and emerging areas in the field of AI applications in AMD. This bibliometric analysis sought to systematically evaluate the landscape of AI-focused research on AMD to illuminate publication patterns, influential contributors, and focal research trends.

View Article and Find Full Text PDF

Background: Age-related macular degeneration (AMD), a condition of multifactorial origin, is a major cause of irreversible vision loss in industrialized countries. The dry late stage of the disease, known as geographic atrophy (GA), is characterized by progressive loss of photoreceptor cells and retinal pigment epithelial cells in the central retina. An estimated 300 000 to 550 000 people in Germany suffer from GA.

View Article and Find Full Text PDF

Aim: To quantify and compare longitudinal thickness changes of the ganglion cell complex (GCC) and the choroid in patients with different patterns of age-related macular degeneration (AMD) progression.

Methods: Retrospective cohort analysis of anonymized data from participants aged 50y or more and diagnosed with early/intermediate AMD in at least one eye (with no evidence of advanced AMD). A total of 64 participants were included from the Instituto de Retina de Lisboa (IRL) study (IPL/2022/MetAllAMD_ESTeSL) and divided into 4 groups according to the Rotterdam classification for AMD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!