This study aims to investigate the effect of Xixin Decoction on the T helper 17 cell(Th17)/regulatory T cell(Treg) ba-lance of intestinal mucosa and the expression of related transcription factors in the senescence-accelerated mouse-prone 8(SAMP8) model. Fifty 14-week male mice of SAMP8 were randomized by the random number table method into model group, probiotics group, and high-, medium-, and low-dose Xixin Decoction groups, with 10 mice in each group. Ten 14-week male mice of senescence-acce-lerated mouse-resistant 1(SAMR1) served as control group. After 10 weeks of feeding, the mice were administrated with correspon-ding drugs for 10 weeks. Morris water maze test was carried out to examine the learning and memory abilities of mice. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the content of secretory immunoglobulin A(SIgA) in the intestinal mucosa, and flow cytometry to detect the percentage content of Th17 and Treg in the intestinal mucosa. Western blot was performed to determine the protein levels of retinoid-related orphan receptor gamma t(RORγt) and forkhead box p3(Foxp3) in the mouse colon tissue. Compared with control group, the escape latency of mice in model group was significantly prolonged(P<0.01), and the number of times of crossing the platform and the residence time in the target quadrant were significantly reduced within 60 s(P<0.01), intestinal mucosal SIgA content was significantly decreased(P<0.01), Th17 content was increased(P<0.05), Treg content was decreased(P<0.01), the expression of RORγt protein was increased and Foxp3 protein was decreased in colon(P<0.01). Compared with the model group, high-dose Xixin Decoction group improved the learning and memory ability(P<0.05 or P<0.01). Probiotics group and high-and medium-dose Xixin Decoction group increased the content of SIgA in intestinal mucosa(P<0.05 or P<0.01), decreased percentage content of Th17 and increased the percentage content of Treg in intestinal mucosa(P<0.05 or P<0.01). Furthermore, they down-regulated the protein level of RORγt and up-regulated the protein level of Foxp3 in the intestinal mucosa(P<0.01). In conclusion, Xixin Decoction may act on intestinal mucosal immune barrier, affect gut-brain information exchange, and improve the learning and memory ability of SAMP8 by promoting SIgA secretion and regulating the Th17/Treg balance and the expression of RORγt and Foxp3.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.19540/j.cnki.cjcmm.20231210.502 | DOI Listing |
Clin Transl Allergy
January 2025
China Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
Background: Asthma is currently one of the most common of respiratory diseases, severely affecting the lives of patients. With the in-depth study of the role of the nervous system and sex hormones on the development of asthma, it has been found that the nervous system and sex hormones are related to each other in the pathway of asthma.
Objective: To investigate the effects of sex hormones and the nervous system on the development of asthma.
Chem Biodivers
December 2024
Xi'an Jiaotong University, pathology, No.76 Yanta West Road, Xi'an, Shaanxi 710061, China, 710061, Xian, CHINA.
Vascular dementia (VaD) is a type of dementia that results from brain injury caused by cerebrovascular disease or vascular risk factors. Accumulating evidence from clinical studies has found that Xixin decoction can effectively improve the cognitive function of patients with VaD and improve their daily living ability. However, the pathogenesis of VaD is not fully understood, and the therapeutic mechanism of Xixin decoction is also unclear.
View Article and Find Full Text PDFExplore (NY)
November 2024
The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China. Electronic address:
Medicine (Baltimore)
October 2024
Department of Respiratory Medicine, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, Jilin, China.
Modern medical practice has confirmed the efficacy of Mahuang Fuzi Xixin Decoction (MHFZXXD) in treating elderly bronchial asthma, but its specific mechanisms of action remain to be clarified. Therefore, this study utilizes network pharmacology, molecular docking techniques, and molecular dynamics simulations to explore the key active components, core target genes, and potential mechanisms of MHFZXXD in the treatment of elderly bronchial asthma. Active components and related targets of MHFZXXD were identified through the retrieval and screening of the TCMSP, Swiss Targets Prediction, and Uniprot databases.
View Article and Find Full Text PDFHeliyon
August 2024
School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
Neuropathic pain (NeP) is a condition charactesized by nervous system injury or dysfunction that affects a significant portion of the population. Current treatments are ineffective, highlighting the need for novel therapeutic approaches. Mahuang Fuzi Xixin decoction (MFXD) has shown promise for treating pain conditions in clinical practice; however, its potential against NeP and the underlying mechanisms remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!