The present experiments report the effects of estradiol or of progesterone on the activity of 15-prostaglandin-dehydrogenase (PGDH) in the uterus of spayed rats. When the substrate was PGF2 alpha the treatment with progesterone (4 mg X day-1, two days) or with estradiol-17-beta (0.5 ug + 1 ug) did not show any effect on the activity of the enzyme. On the contrary, uteri from ovariectomized rats injected with a higher dose of estradiol-17-beta (0.5 ug + 50 ug) exhibited a significant increment. When the substrate was PGE2, progesterone failed again to modify the enzyme activity, whereas estradiol, both at a low and at a high doses, enhanced significantly the uterine PGDH activity. The possibility of two different PGDHs for each PG and the role of estradiol in enhancing PGE2 catabolism into 15-keto-PGE2 as a mechanism subserving the effect of estrogens on the output of this PG in the rat uterus, are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0090-6980(85)90220-5DOI Listing

Publication Analysis

Top Keywords

rat uterus
8
activity
5
influence sex
4
sex hormones
4
hormones prostaglandin
4
prostaglandin dehydrogenase
4
dehydrogenase activity
4
activity rat
4
uterus experiments
4
experiments report
4

Similar Publications

Menopause is a natural biological aging process characterized by the loss of ovarian follicular function and decrease estrogen levels. These hormonal fluctuations are associated with increased iron levels, which ultimately lead to iron accumulation. This study aims to investigate the effects of Deferasirox on iron homeostasis and hematopoiesis in ovariectomized rats with iron accumulation.

View Article and Find Full Text PDF

Background: Infertility is a special reproductive health defect. For women, congenital uterine malformations, extensive adhesions in the uterine cavity, and hysterectomy are associated with infertility. Uterine transplantation is technically feasible, but its clinical application and development are limited by donor shortages and immune rejection.

View Article and Find Full Text PDF

This study aimed to determine the protective role of boric acid in a pregnant rat model of high fructose corn syrup consumption. Consumption of high fructose corn syrup has been associated with adverse health outcomes in humans and animals. Twenty-eight healthy female Wistar albino rats (250-300 g weight and 16-24 weeks old) were randomly distributed into four equal groups (n = 7): Control, Boric acid (BA), High Fructose Corn Syrup (HFCS), HFCS + BA.

View Article and Find Full Text PDF

Thymol and Carvacrol as Potential Tocolytic and Anti-inflammatory Agents in Pregnant Rat Uterus.

Curr Mol Pharmacol

January 2025

Área Académica de Medicina del Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca, Hidalgo, México.

Introduction: This work aimed to evaluate the anti-inflammatory and myorelaxant effect of thymol (TM) and carvacrol (CAR) in the pregnant rat uterus. Both compounds exhibit considerable antimicrobial, antispasmodic, and anti-inflammatory effects and due to these properties, they were studied in this in vitro model of premature birth induced by infection.

Method: All uterine tissues were studied in uterine contraction tests to determine the inhibitory effect of TM, CAR (10, 56, 100, 150, and 230 μM), and nifedipine (a calcium channel antagonist) on phasic and tonic contraction induced by electro- and pharmacomechanical stimuli.

View Article and Find Full Text PDF

The experience of pregnancy affects uterine function well beyond delivery. We previously demonstrated that the response to oxytocin is more robust in the uteri of proven breeder rats. This study investigates the contribution of T-type calcium channels (TTCCs) and L-type calcium channels (LTCCs) to the distinct response of virgin (V) and proven breeder (PB) rat uteri to oxytocin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!