Introduction: Osteoarthritis (OA) is a devastating whole-joint disease affecting a large population worldwide; the role of lipid dysregulation in OA and mechanisms underlying targeted therapy effect of lipid-lowering metformin on OA remains poorly defined.
Objectives: To investigate the effects of lipid dysregulation on OA progression and to explore lipid dysregulation-targeting OA treatment of metformin.
Methods: RNA-Seq data, biochemical, and histochemical assays in human and murine OA cartilage as well as primary chondrocytes were utilized to determine lipid dysregulation. Effects of metformin, a potent lipid-lowering medication, on ACSL4 expression and chondrocyte metabolism were determined. Further molecular experiments, including RT-qPCR, western blotting, flow cytometry, and immunofluorescence staining, were performed to investigate underlying mechanisms. Mice with intra-articular injection of metformin were utilized to determine the effects on ACLT-induced OA progression.
Results: ACSL4 and 4-HNE expressions were elevated in human and ACLT-induced mouse OA cartilage and IL-1β-treated chondrocytes (P < 0.05). Ferrostatin-1 largely rescued IL-1β-induced MDA, lipid peroxidation, and ferroptotic mitochondrial morphology (P < 0.05). Metformin decreased the levels of OA-related genes (P < 0.05) and increased the levels of p-AMPK and p-ACC in IL-1β-treated chondrocytes. Intra-articular injection of metformin alleviated ACLT-induced OA lesions in mice, and reverted the percentage of chondrocytes positive for MMP13, Col2a1, ACSL4 and 4-HNE in ACLT mice (P < 0.05). Ferroptotic chondrocytes promoted the recruitment and chemotaxis of RAW264.7 cells via CCL2, which was blocked by metformin in vitro (P < 0.05).
Conclusion: We establish a critical role of polyunsaturated fatty acids metabolic process in OA cartilage degradation and define metformin as a potential OA treatment. Metformin reshapes lipid availability and ameliorates chondrocyte ferroptosis sensitivity via the AMPK/ACC pathway. In the future, gene-edited animals and extensive omics technologies will be utilized to reveal detailed lipids' involvement in cartilage lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jare.2024.04.012 | DOI Listing |
Background: The increased incidence of Alzheimer's disease (AD) rate represent an unmet medical need and thus critical for the development of novel molecular therapeutics. Recent work focusing on patients with apoE4 alleles has highlighted the association of brain cholesterol dysregulation with elevated pathological burden and neurodegeneration. These studies have highlighted the importance of the nuclear receptor Liver X receptor (LXR) for developing AD therapies.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Georgia, College of Pharmacy, Athens, GA, USA.
Background: Lipids are key modulators in the pathogenesis of Alzheimer's disease (AD). Dysregulation of lipid homeostasis may disrupt the blood brain barrier, alter myelination, disturb cellular signaling and cause abnormal processing of the amyloid precursor protein. The purpose of this scoping review was to evaluate fatty acid supplementation in patients with AD.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Division of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Dysregulated energy metabolism, particularly lipid metabolism disorders, has been identified as a key factor in the development of diabetic cardiomyopathy (DCM). Sirtuin 2 (SIRT2) is a deacetylase involved in the regulation of metabolism and cellular energy homeostasis, yet its role in the progression of DCM remains unclear. We observed significantly reduced SIRT2 expression in DCM model mice.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Department of Urology, the First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, PR China.
The current research revealed a strong link between lipid reprogramming and dysregulated lipid metabolism to the genesis and development of clear cell renal cell carcinoma (ccRCC). Pathologically, ccRCC exhibits a high concentration of lipid droplets within the cytoplasm. HIF-2α expression has previously been demonstrated to be elevated in ccRCC caused by mutations in the von Hippel-Lindau (VHL) gene, which plays a vital role in the development of renal cell carcinoma.
View Article and Find Full Text PDFFood Chem Toxicol
January 2025
RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic. Electronic address:
Endocrine-disrupting compounds (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!