Gallium and silver-doped titanium surfaces provide enhanced osteogenesis, reduce bone resorption and prevent bacterial infection in co-culture.

Acta Biomater

Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034, Barcelona, Spain.

Published: May 2024

Bacterial infection remains a significant problem associated with orthopaedic surgeries leading to surgical site infection (SSI). This unmet medical need can become an even greater complication when surgery is due to malignant bone tumor. In the present study, we evaluated in vitro titanium (Ti) implants subjected to gallium (Ga) and silver (Ag)-doped thermochemical treatment as strategy to prevent SSI and improve osteointegration in bone defects caused by diseases such as osteoporosis, bone tumor, or bone metastasis. Firstly, as Ga has been reported to be an osteoinductive and anti-resorptive agent, its performance in the mixture was proved by studying human mesenchymal stem cells (hMSC) and pre-osteoclasts (RAW264.7) behaviour. Then, the antibacterial potential provided by Ag was assessed by resembling "The Race for the Surface" between hMSC and Pseudomonas aeruginosa in two co-culture methods. Moreover, the presence of quorum sensing molecules in the co-culture was evaluated. The results highlighted the suitability of the mixture to induce osteodifferentiation and reduce osteoclastogenesis in vitro. Furthermore, the GaAg surface promoted strong survival rate and retained osteoinduction potential of hMSCs even after bacterial inoculation. Therefore, GaAg-modified titanium may be an ideal candidate to repair bone defects caused by excessive bone resorption, in addition to preventing SSI. STATEMENT OF SIGNIFICANCE: This article provides important insights into titanium for fractures caused by osteoporosis or bone metastases with high incidence in surgical site infection (SSI) because in this situation bacterial infection can become a major disaster. In order to solve this unmet medical need, we propose a titanium implant modified with gallium and silver to improve osteointegration, reduce bone resorption and avoid bacterial infection. For that aim, we study osteoblast and osteoclast behavior with the main novelty focused on the antibacterial evaluation. In this work, we recreate "the race for the surface" in long-term experiments and study bacterial virulence factors (quorum sensing). Therefore, we believe that our article could be of great interest, providing a great impact on future orthopedic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2024.04.019DOI Listing

Publication Analysis

Top Keywords

bacterial infection
16
bone resorption
12
bone
9
reduce bone
8
surgical site
8
site infection
8
infection ssi
8
unmet medical
8
bone tumor
8
gallium silver
8

Similar Publications

The bacterial infection and oxidative wound microenvironment delay skin repair and necessitate intelligent wound dressings to enable scarless wound healing. The immunoglobulin of yolk (IgY) exhibits immunotherapeutic potential for the potential treatment of antimicrobial-resistant pathogens, while cerium oxide nanoparticles (CeO NPs) could scavenge superoxide dismutase (SOD) and inflammation. The overarching objective of this study was to incorporate IgY and CeO NPs into poly(L-lactide-co-glycolide)/gelatin (PLGA/Gel)-based dressings (P/G@IYCe) for infected skin repair.

View Article and Find Full Text PDF

Antibacterial carbon dots.

Mater Today Bio

February 2025

Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.

Bacterial infections significantly threaten human health, leading to severe diseases and complications across multiple systems and organs. Antibiotics remain the primary treatment strategy for these infections. However, the growing resistance of bacteria to conventional antibiotics underscores the urgent need for safe and effective alternative treatments.

View Article and Find Full Text PDF

Introduction: The widespread use of antibiotics is a serious and alarming situation in terms of the development of antimicrobial resistance. The current study was conducted to demonstrate the types of organism isolated from the urine of patients presenting with UTI symptoms as well as their antimicrobial sensitivity spectrum.

Methodology: A descriptive cross-sectional study was conducted, and 272 positive urine cultures from children under 5 years of age with signs and symptoms of a UTI were included in the study.

View Article and Find Full Text PDF

Mycotic aneurysms are rare but severe complications that can arise from systemic bacterial infections, including those caused by Salmonella species. These aneurysms can progress rapidly and are associated with high mortality. A 62-year-old man with poorly controlled type 2 diabetes mellitus presented to the hospital in septic shock.

View Article and Find Full Text PDF

Background: The use of vancomycin powder in spine surgery has been supported in adult populations, however, its efficacy in preventing postoperative surgical site infections in AIS patients is yet to be determined.

Methods: A multi-center review was conducted from June 2010 to February 2019, using ICD and CPT codes to identify AIS patients who underwent primary PSF. The patients were divided into two groups: the vancomycin cohort (receiving local vancomycin powder prior to wound closure) and the non-vancomycin cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!