Background: Microglial activation plays a crucial role in injury and repair after cerebral ischemia, and microglial pyroptosis exacerbates ischemic injury. NOD-like receptor protein 3 (NLRP3) inflammasome activation has an important role in microglial polarization and pyroptosis. Aloe-emodin (AE) is a natural anthraquinone compound originated from rhubarb and aloe. It exerts antioxidative and anti-apoptotic effects during cerebral ischemia/reperfusion (I/R) injury. However, whether AE affects microglial polarization, pyroptosis, and NLRP3 inflammasome activation remains unknown.
Purpose: This study aimed to explore the effects of AE on microglial polarization, pyroptosis, and NLRP3 inflammasome activation in the cerebral infarction area after I/R.
Methods: The transient middle cerebral artery occlusion (tMCAO) and oxygen-glucose deprivation/re-oxygenation (OGD/R) methods were used to create cerebral I/R models in vivo and in vitro, respectively. Neurological scores and triphenyl tetrazolium chloride and Nissl staining were used to assess the neuroprotective effects of AE. Immunofluorescence staining, quantitative polymerase chain reaction and western blot were applied to detect NLRP3 inflammasome activation and microglial polarization and pyroptosis levels after tMCAO or OGD/R. Cell viability and levels of interleukin (IL)-18 and IL-1β were measured. Finally, MCC950 (an NLRP3-specific inhibitor) was used to evaluate whether AE affected microglial polarization and pyroptosis by regulating the activation of the NLRP3 inflammasome.
Results: AE improved neurological function scores and reduced the infarct area, brain edema rate, and Nissl-positive cell rate following I/R injury. It also showed a protective effect on BV-2 cells after OGD/R. AE inhibited microglial pyroptosis and induced M1 to M2 phenotype transformation and suppressed microglial NLRP3 inflammasome activation after tMCAO or OGD/R. The combined administration of AE and MCC950 had a synergistic effect on the inhibition of tMCAO- or OGD/R-induced NLRP3 inflammasome activation, which subsequently suppressed microglial pyroptosis and induced microglial phenotype transformation.
Conclusion: AE exerts neuroprotective effects by regulating microglial polarization and pyroptosis through the inhibition of NLRP3 inflammasome activation after tMCAO or OGD/R. These findings provide new evidence of the molecular mechanisms underlying the neuroprotective effects of AE and may support the exploration of novel therapeutic strategies for cerebral ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phymed.2024.155578 | DOI Listing |
Int Immunopharmacol
January 2025
Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China. Electronic address:
Scopoleitin (SP), a bioactive compound from many edible plants and fruits, exerts a wide range of biological activities, however the role and mechanism of SP in acetaminophen (APAP)-induced hepatotoxicity remains unclear. In this study, we verified the protective effect of SP on APAP-induced liver injury (AILI) hepatotoxicity and explore the underlying molecular mechanisms. Here, we showed that SP alleviated AILI by reducing serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, hepatic histopathological damage, inflammation, and liver cell apoptosis.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China. Electronic address:
The immune-responsive gene 1 (IRG1) protein plays a role in various pathological processes by connecting cellular metabolism to a range of cellular activities through the production of itaconate. Recent studies have highlighted the significance of IRG1 and itaconate in bone metabolism and homeostasis. However, the precise role of IRG1 in osteoporosis remains inadequately documented.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.
The NLRP3 inflammasome is a fundamental component of the innate immune system, yet its excessive activation is intricately associated with viral pathogenesis. Porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2), belonging to the family Arteriviridae, triggers dysregulated cytokine release and interstitial pneumonia, which can quickly escalate to acute respiratory distress and death. However, a mechanistic understanding of PRRSV-2 progression remains unclear.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Experimental Medicine Research Center, Tehran University of Medical Sciences, P.O. Box: 13145-784, Tehran, Iran.
Background: Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pain Management, The State Key Specialty in Pain Medicine, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Background: The nod-like receptor family pyrin domain-containing 3 (NLRP3) has been implicated in various skin diseases. However, its role in mediating 2, 4-dinitrofluorobenzene (DNFB)-induced chronic itch remains unclear.
Methods: Widetype () and deletion ( )mice, the expression of transient receptor potential (TRP) ankyrin 1 (TRPA1) inhibitor or recombinant mice interleukin-18 (IL-18) were used to establish and evaluate the severity of DNFB-mediated chronic itch.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!