Water often serves as both a reactant and solvent in electrocatalytic reactions. Interfacial water networks can affect the transport and kinetics of these reactions, e.g., hydrogen evolution reaction and CO reduction reaction. Adding cosolvents that influence the hydrogen-bonding (H-bonding) environment, such as dimethyl sulfoxide (DMSO), has the potential to tune the reactivity of these important electrocatalytic reactions by regulating the interfacial local environment and water network. We investigate interfacial H-bonding networks in water-DMSO cosolvent mixtures on gold surfaces by using surface-enhanced infrared absorption spectroscopy and molecular dynamics simulations. Experiments and simulations show that the gold surface is enriched with dehydrated DMSO molecules and the mixture phase-separates to form water clusters. Simulations show a "buckled" water conformation at the surface, further constraining interfacial H-bonding. The small size of these water clusters and the energetically unfavorable H-bond conformations might inhibit H-bonding with bulk water, suppressing the proton diffusion required for efficient hydrogen evolution reaction processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c00645 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States.
Electrochemical aptamer-based (EAB) sensors are a molecular measurement platform that enables the continuous, real-time measurement of a wide range of drugs and biomarkers in situ in the living body. EAB sensors are fabricated by depositing a thiol-modified, target-binding aptamer on the surface of a gold electrode, followed by backfilling with an alkanethiol to form a self-assembled monolayer. And while the majority of previously described EAB sensors have employed hydroxyl-terminated monolayers, a handful of studies have shown that altering the monolayer headgroup can strongly affect sensor performance.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Biomedical Engineering, Shenzhen Key Laboratory for Nano-Biosensing Technology, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
Aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) has endowed gold species with responsive fluorescent properties, favoring their potential applications in sensing, imaging, and therapy. However, it remains an interesting challenge to fabricate fluorophores with both AIE and AIEE effects. Herein, we presented highly luminescent Au(I) thiolate nanocomplex-based biosensors with Zn induced-AIE and zeolite imidazolate framework (ZIF-8) induced-AIEE effects.
View Article and Find Full Text PDFACS Catal
January 2025
Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States.
Automated, rapid electrocatalyst discovery techniques that comprehensively address the exploration of chemical spaces, characterization of catalyst robustness, reproducibility, and translation of results to (flow) electrolysis operation are needed. Responding to the growing interest in biomass valorization, we studied the glycerol electro-oxidation reaction (GEOR) on gold in alkaline media as a model reaction to demonstrate the efficacy of such methodology introduced here. Our platform combines individually addressable electrode arrays with HardPotato, a Python application programming interface for potentiostat control, to automate electrochemical experiments and data analysis operations.
View Article and Find Full Text PDFSmall Methods
January 2025
NEST, Istituto Nanoscienze - CNR and Scuola Normale Superiore, Pisa, I-56127, Italy.
A ground-breaking graphene-based biosensor designed for label-free detection of immunoglobulin M (IgM) achieving a remarkable concentration of 100 zeptomolar (10 m), is reported. The sensor is a two-terminal device and incorporates a millimeter-wide gold interface, bio-functionalized with ≈10 anti-IgM antibodies and capacitively coupled to a bare graphene electrode through a water-soaked paper strip. In this configuration, few affinity binding events trigger a collective electrostatic reorganization of the protein layer, leading to an extended surface potential (SP) shift of the biofunctionalized Au surface.
View Article and Find Full Text PDFBiomacromolecules
January 2025
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
Various polycations and polyanions were sequentially adsorbed onto the gold electrode of a quartz crystal microbalance with dissipation monitoring. The study focused on determining the adsorption kinetics, viscoelastic properties, and electroresponsivity of polyelectrolyte layers. For the first time, it was demonstrated that the structure (compact or expanded) of the layers can be determined by electroresponsivity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!