A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Changing Landscape of Antimicrobial Resistance in Neonatal Sepsis: An in silico Analyses of Multidrug Resistance in Klebsiella pneumoniae. | LitMetric

AI Article Synopsis

  • Neonatal sepsis caused by multidrug-resistant K. pneumoniae is a growing concern, necessitating a better understanding of its antimicrobial susceptibility patterns and resistance mechanisms.
  • The study analyzed K. pneumoniae strains from neonates over three years, focusing on β-lactam and fluoroquinolone resistance through molecular analysis.
  • Results showed high resistance rates, with molecular docking revealing low antibiotic binding to target proteins, emphasizing the need for new treatment options due to the changing resistance profiles.

Article Abstract

Background: Neonatal sepsis poses a critical healthcare concern, as multidrug-resistant Klebsiella pneumoniae ( K. pneumoniae ) infections are on the rise. Understanding the antimicrobial susceptibility patterns and underlying resistance mechanism is crucial for effective treatment.

Objectives: This study aimed to comprehensively investigate the antimicrobial susceptibility patterns of K. pneumoniae strains responsible for neonatal sepsis using in silico tools. We sought to identify trends and explore reasons for varying resistance levels, particularly for β-lactams and fluoroquinolone.

Methods: K. pneumoniae isolated from neonates at Kanchi Kamakoti CHILDS Trust Hospital (2017-2020) were analyzed for antimicrobial resistance. Elevated resistance to β-lactam and fluoroquinolone antibiotics was further investigated through molecular docking and interaction analysis. β-lactam affinity with penicillin-binding proteins and β-lactamases was examined. Mutations in ParC and GyrA responsible for quinolone resistance were introduced to investigate ciprofloxacin interactions.

Results: Of 111 K. pneumoniae blood sepsis isolates in neonates, high resistance was detected to β-lactams such as cefixime (85.91%, n = 71), ceftriaxone (84.9%, n = 106), cefotaxime (84.9%, n = 82) and fluoroquinolone (ciprofloxacin- 79.44%, n = 107). Molecular docking revealed low β-lactam binding toward penicillin-binding proteins and higher affinities for β-lactamases, attributing to the reduced β-lactam efficiency. Additionally, ciprofloxacin showed decreased affinity toward mutant ParC and GyrA in comparison to their corresponding wild-type proteins.

Conclusion: Our study elucidates altered resistance profiles in neonatal sepsis caused by K. pneumoniae , highlighting mechanisms of β-lactam and fluoroquinolone resistance. It underscores the urgent need for the development of sustainable therapeutic alternatives to address the rising antimicrobial resistance in neonatal sepsis.

Download full-text PDF

Source
http://dx.doi.org/10.1097/INF.0000000000004358DOI Listing

Publication Analysis

Top Keywords

neonatal sepsis
20
antimicrobial resistance
12
resistance
11
resistance neonatal
8
sepsis silico
8
klebsiella pneumoniae
8
antimicrobial susceptibility
8
susceptibility patterns
8
β-lactam fluoroquinolone
8
molecular docking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!