Passively mode-locked fiber lasers based on a nonlinear polarization rotation (NPR) have attracted much attention due to their ability to generate short pulses with wide spectra and high peak power. However, environmental perturbations can easily cause the lasers to lose the mode-locked state and make it a challenge for practical application. The aim of this research is to improve the laser stability by inserting a Lyot filter into the mode-locked laser cavity. The experimental results indicate that the mode-locked state can be maintained when the radius of the fiber loop is changed from 7.5 to 1.5 cm, while the signal-to-noise ratio of the fundamental frequency remains almost the same. The tunability of the output power can be achieved by adding a half-wave plate (HWP) in the laser cavity without changing the pump power, while the mode-locked state remains stable. By adjusting the angle of the HWP2, the output power can be adjusted from 3.36 to 66.5 mW at repetition rate of 29.7 MHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.516495 | DOI Listing |
An intelligent controlled spatiotemporal mode-locked (STML) fiber laser based on a photonic lantern (PL) is proposed and experimentally demonstrated. A pair of in-house developed PLs is spliced into the cavity in a back-to-back structure. This PL-based structure functions as a mode multiplexer/demultiplexer to generate higher-order spatial modes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Lin'an 311300, China.
As a member of the chalcogenide family, NiSe exhibits a direct bandgap of 1.74 eV, making it a promising candidate for nonlinear optical devices. However, its potential in the near-infrared region of the telecommunication band has not been fully explored.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.
Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.
View Article and Find Full Text PDFNanophotonics
April 2024
TUM School of Computation, Information and Technology, Technical University of Munich (TUM), D-85748 Garching, Germany.
In research and engineering, short laser pulses are fundamental for metrology and communication. The generation of pulses by passive mode-locking is especially desirable due to the compact setup dimensions, without the need for active modulation requiring dedicated external circuitry. However, well-established models do not cover regular self-pulsing in gain media that recover faster than the cavity round trip time.
View Article and Find Full Text PDFNanophotonics
April 2024
CNR-INO - Istituto Nazionale di Ottica, Via Carrara, 1 - 50019, Sesto Fiorentino FI, Italy.
Since the beginning of this millennium, frequency comb generators have reshaped frequency metrology and related areas. After more than two decades since their first realization, several other ways to generate frequency combs, in any spectral region, have been demonstrated, each way with its peculiar features. This trend has triggered the need to quantitatively assess how close the new comb realizations are to an ideal comb, a feature that will be called combness throughout this paper.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!