Superradiant phase transitions play a fundamental role in understanding the mechanism of collective light-matter interaction at the quantum level. Here we investigate multiple superradiant phases and phase transitions with different symmetry-breaking patterns in a two-mode V-type Dicke model. Interestingly, we show that there exists a quadruple point where one normal phase, one global symmetry-breaking superradiant phase, and two local symmetry-breaking superradiant phases meet. Such a global phase results from the phase competition between two local superradiant phases and cannot occur in the standard Λ- and -type three-level configurations in quantum optics. Moreover, we exhibit a sequential first-order quantum phase transition from one local to the global again to the other local superradiant phase. Our study opens up a perspective of exploring multilevel quantum critical phenomena with global symmetry breaking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.522886 | DOI Listing |
Phys Rev Lett
December 2024
CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China.
We study the superradiant phase transition of an array of Rydberg atoms in a dissipative microwave cavity. Under the interplay of the cavity field and the long-range Rydberg interaction, the steady state of the system exhibits an interaction-enhanced superradiance, with vanishing critical atom-cavity coupling rates at a discrete set of interaction strengths. We find that, while the phenomenon can be analytically understood in the case of a constant all-to-all interaction, the enhanced superradiance persists under typical experimental parameters with spatially dependent interactions, but at modified critical interaction strengths.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, Columbia University, 538 West 120th Street, New York, New York 10027, USA.
Bilayer materials may support interlayer excitons comprised of electrons in one layer and holes in the other. In experiments, a nonzero exciton density is typically sustained by a bias chemical potential, implemented either by optical pumping or by electrical contacts connected to the two layers. We show that if charge can tunnel between the layers, the chemical potential bias means that an exciton condensate is in the dynamical regime of ac Josephson effect.
View Article and Find Full Text PDFNanophotonics
May 2024
University of California, Los Angeles, Los Angeles, USA.
One of the most significant and surprising recent developments in nanocrystal studies was the observation of superfluorescence from a system of self-assembled, colloidal perovskite nanocrystals [G. Rainò, M. A.
View Article and Find Full Text PDFPhys Rev E
October 2024
Center for Quantum Technologies, Department of Physics, St. Kliment Ohridski University of Sofia, James Bourchier 5 Boulevard, 1164 Sofia, Bulgaria.
We investigate the onset of quantum thermalization in a system governed by the Jahn-Teller Hamiltonian, which describes the interaction between a single spin and two bosonic modes. We find that the Jahn-Teller model exhibits a finite-size quantum phase transition between the normal phase and two types of super-radiant phase when the ratios of spin-level splitting to each of the two bosonic frequencies grow to infinity. We test the prediction of the eigenstate thermalization hypothesis in the Jahn-Teller model.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou 310027, China.
Quantum simulation offers an analog approach for exploring exotic quantum phenomena using controllable platforms, typically necessitating ultracold temperatures to maintain the quantum coherence. Superradiance lattices (SLs) have been harnessed to simulate coherent topological physics at room temperature, but the thermal motion of atoms remains a notable challenge in accurately measuring the physical quantities. To overcome this obstacle, we implement a velocity scanning tomography technique to discern the responses of atoms with different velocities, allowing cold-atom spectroscopic resolution within room-temperature SLs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!